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Abstract

“Efficient techniques for large-scale
Web data management”

Jesús Camacho Rodríguez

The recent development of commercial cloud computing environments has
strongly impacted research and development in distributed software platforms. Cloud
providers offer a distributed, shared-nothing infrastructure, that may be used for data
storage and processing.

In parallel with the development of cloud platforms, programming models that
seamlessly parallelize the execution of data-intensive tasks over large clusters of com-
modity machines have received significant attention, starting with the MapReduce
model very well known by now, and continuing through other novel and more ex-
pressive frameworks. As these models are increasingly used to express analytical-
style data processing tasks, the need for higher-level languages that ease the burden
of writing complex queries for these systems arises.

This thesis investigates the efficient management of Web data on large-scale in-
frastructures. In particular, we study the performance and cost of exploiting cloud
services to build Web data warehouses, and the parallelization and optimization of
query languages that are tailored towards querying Web data declaratively.

First, we present AMADA, an architecture for warehousing large-scale Web data
in commercial cloud platforms. AMADA operates in a Software as a Service (SaaS)
approach, allowing users to upload, store, and query large volumes of Web data.
Since cloud users support monetary costs directly connected to their consumption
of resources, our focus is not only on query performance from an execution time
perspective, but also on the monetary costs associated to this processing. In particular,
we study the applicability of several content indexing strategies, and show that they
lead not only to reducing query evaluation time, but also, importantly, to reducing
the monetary costs associated with the exploitation of the cloud-based warehouse.

Second, we consider the efficient parallelization of the execution of complex
queries over XML documents, implemented within our system PAXQuery. We pro-
vide novel algorithms showing how to translate such queries into plans expressed
in the PArallelization ConTracts (PACT) programming model. These plans are then
optimized and executed in parallel by the Stratosphere system. We demonstrate the
efficiency and scalability of our approach through experiments on hundreds of GB of
XML data.

Finally, we present a novel approach for identifying and reusing common subex-
pressions occurring in Pig Latin scripts. In particular, we lay the foundation of our
reuse-based algorithms by formalizing the semantics of the Pig Latin query language
with extended nested relational algebra for bags. Our algorithm, named PigReuse,
operates on the algebraic representations of Pig Latin scripts, identifies subexpression
merging opportunities, selects the best ones to execute based on a cost function, and



ii

merges other equivalent expressions to share its result. We bring several extensions
to the algorithm to improve its performance. Our experiment results demonstrate the
efficiency and effectiveness of our reuse-based algorithms and optimization strategies.

Keywords: Web data, XML, commercial cloud services, indexing strategies, query pro-
cessing, distributed storage, query parallelization, XQuery, multi-query optimization,
Pig Latin.
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Résumé

“Techniques efficaces de gestion de données Web
à grande échelle”

Jesús Camacho Rodríguez

Le développement récent des offres commerciales autour du cloud computing a
fortement influé sur la recherche et le développement des plateformes de distribu-
tion numérique. Les fournisseurs du cloud offrent une infrastructure de distribution
extensible qui peut être utilisée pour le stockage et le traitement des données.

En parallèle avec le développement des plates-formes de cloud computing, les
modèles de programmation qui parallélisent de manière transparente l’exécution des
tâches gourmandes en données sur des machines standards ont suscité un intérêt
considérable, à commencer par le modèle MapReduce très connu aujourd’hui puis
par d’autres frameworks plus récents et complets. Puisque ces modèles sont de plus
en plus utilisés pour exprimer les tâches de traitement de données analytiques, la
nécessité se fait ressentir dans l’utilisation des langages de haut niveau qui facilitent
la charge de l’écriture des requêtes complexes pour ces systèmes.

Cette thèse porte sur des modèles et techniques d’optimisation pour le traite-
ment efficace de grandes masses de données du Web sur des infrastructures à grande
échelle. Plus particulièrement, nous étudions la performance et le coût d’exploitation
des services de cloud computing pour construire des entrepôts de données Web ainsi
que la parallélisation et l’optimisation des langages de requêtes conçus sur mesure
selon les données déclaratives du Web.

Tout d’abord, nous présentons AMADA, une architecture d’entreposage de don-
nées Web à grande échelle dans les plateformes commerciales de cloud computing.
AMADA opère comme logiciel en tant que service, permettant aux utilisateurs de
télécharger, stocker et interroger de grands volumes de données Web. Sachant que
les utilisateurs du cloud prennent en charge les coûts monétaires directement liés à
leur consommation de ressources, notre objectif n’est pas seulement la minimisation
du temps d’exécution des requêtes, mais aussi la minimisation des coûts financiers
associés aux traitements de données. Plus précisément, nous étudions l’applicabilité
de plusieurs stratégies d’indexation de contenus et nous montrons qu’elles permettent
non seulement de réduire le temps d’exécution des requêtes mais aussi, et surtout, de
diminuer les coûts monétaires liés à l’exploitation de l’entrepôt basé sur le cloud.

Ensuite, nous étudions la parallélisation efficace de l’exécution de requêtes com-
plexes sur des documents XML mis en œuvre au sein de notre système PAXQuery.
Nous fournissons de nouveaux algorithmes montrant comment traduire ces requêtes
dans des plans exprimés par le modèle de programmation PACT (PArallelization Con-
Tracts). Ces plans sont ensuite optimisés et exécutés en parallèle par le système
Stratosphere. Nous démontrons l’efficacité et l’extensibilité de notre approche à
travers des expérimentations sur des centaines de Go de données XML.

Enfin, nous présentons une nouvelle approche pour l’identification et la réutilisa-



iv

tion des sous-expressions communes qui surviennent dans les scripts Pig Latin. Notre
algorithme, nommé PigReuse, agit sur les représentations algébriques des scripts Pig
Latin, identifie les possibilités de fusion des sous-expressions, sélectionne les meilleurs
à exécuter en fonction du coût et fusionne d’autres expressions équivalentes pour
partager leurs résultats. Nous apportons plusieurs extensions à l’algorithme afin
d’améliorer sa performance. Nos résultats expérimentaux démontrent l’efficacité et la
rapidité de nos algorithmes basés sur la réutilisation et des stratégies d’optimisation.

Mot-clés: données Web, XML, plateformes commerciales de cloud computing, straté-
gies d’indexation, traitement des requêtes, entreposage distribué, parallélisation de
l’exécution de requêtes, XQuery, optimisation multi-requête, Pig Latin.
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Chapter 1

Introduction

The volume and the rate at which data is being created are increasing very rapidly
ever since the inception of the World Wide Web. Data-rich Web sites such as product
catalogs, social media sites, RSS and tweets, blogs and online publications exemplify
this trend. Further, Web data is very heterogeneous and is produced in many different
(possibly complex) formats.

Consequently, an increasing part of the world’s interesting data is either shared
through the Web, or directly produced through and for Web platforms. By today, many
organizations recognize the value of the trove of Web data. However, the storage
and processing of those big volumes of heterogeneous (structured, semi-structured
and unstructured) data poses a series of challenges, concerning: the right models
for describing heterogeneous, complex-structure, distributed data; the languages to
be used to expressively manipulate Web data; finally, the architectures and concrete
algorithms to be put to task in order to efficiently implement the chosen languages.

1.1 Cloud and massive parallelism for Web data

The work undertaken in this thesis is placed in the perspective of taking advan-
tage of cloud infrastructures and massive parallelism software frameworks in order to
address the above challenges. We motivate these choices below before outlining our
contributions.

The recent development of commercial cloud computing environments [AWS,
GCP, WA] has strongly impacted research and development in distributed software
platforms. Cloud providers offer a distributed, shared-nothing infrastructure, that
may be used for data storage and processing. In this thesis, we explore efficient Web
data management architectures built on top of these platforms, and study the perfor-
mance of the resulting Web data warehouse platforms. Moreover, resources consump-
tion is directly translated into monetary costs for the user running the warehouse, so
it becomes necessary to study the interplay between classical data management tech-
niques, and in particular content indexing, and these costs.

In parallel with the development of cloud platforms, programming models that
seamlessly parallelize the execution of data-intensive tasks over large clusters of com-

1
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modity machines have received significant attention, starting with the MapReduce
model [DG04] very well known by now, and continuing through many novel and
more expressive frameworks such as [BEH+10, ZCD+12]. As these models are in-
creasingly used to express analytical-style data processing tasks, the need for higher-
level languages that ease the burden of writing complex queries for these systems
arises. In this thesis, we investigate efficient techniques to translate complex operations
expressed in these high-level languages into implicit parallel programming models such
as those referred to above. Further, we consider optimization opportunities associated
to these new systems.

1.2 Contributions and organization of the thesis

Aiming to study efficient techniques for large-scale Web data management, this
thesis addresses three different main problems: the management of Web data using
commercial cloud services, the parallelization of XQuery processing over large-scale
infrastructures, and the reuse-based optimization of Pig Latin queries. In the follow-
ing, we provide an overview of the organization of the thesis and we outline our main
contributions.

Chapter 2 introduces the scientific background necessary in present the contributions
of our work, as well as the main relevant scientific results in the area.

Chapter 3 presents AMADA, an architecture for warehousing Web data using com-
mercial cloud services. The contributions of this chapter are the following:

– We present a generic architecture for large-scale warehousing of complex Web
data using commercial cloud platforms. Particular attention is devoted to mod-
eling the monetary costs associated to the exploitation of the warehouse.

– We investigate the usage of content indexing for tree-shaped data (in particular,
XML data). In AMADA, indexes serve as a tool to both improve query perfor-
mance, and reduce the warehouse total monetary costs.

– We describe a concrete implementation of our architecture on top of the Ama-
zon Web Services (AWS, in short) platform, among the most widely adopted
commercial cloud platform nowadays. We show that indexing can reduce pro-
cessing time by up to two orders of magnitude and costs by one order of magni-
tude; moreover, index creation costs amortize very quickly as more queries are
run. Since there is a strong similarity among commercial cloud platforms, our
results could easily carry on to another platform.

Chapter 4 presents PAXQuery, a massively parallel processor of XML queries. The
contributions of this chapter are the following:

– We present a novel methodology for massively parallel evaluation of XQuery
which builds on the PArallelization ConTracts (PACT, in short) model [BEH+10],
as well as previous research in algebraic XQuery representation and optimiza-
tion.

– We provide translation algorithms from the algebraic operators required by a
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large fragment of XQuery into PACT operators. In contrast to previous work, this
enables parallel XQuery evaluation without requiring data or query partitioning
effort from the application.

– We model the translation of complex flavors of join operators (including nested
and/or outer joins, disjunctive joins etc.) into PACT. The interest of this transla-
tion goes beyond the context of XQuery evaluation, as it can be adopted to com-
pile programs expressed in other high-level languages into PACT, thus paving
the way to their efficient, parallel execution.

– We fully implemented our translation technique into our PAXQuery platform.
Our experimental evaluation demonstrates that our translation approach ef-
fectively parallelizes XQuery evaluation scaling well beyond competitor ap-
proaches, in particular for what concerns queries featuring joins across different
documents.

Chapter 5 considers the problem of identifying and reusing common sub-expressions
occurring in Pig Latin [ORS+08] scripts. The contributions of this chapter are the
following:

– We formalize the representation of Pig Latin scripts based on an existing well-
established algebraic formalism, specifically Nested Relational Algebra for Bags
(NRAB) [GM93]. This provides a formal foundation for accurately identifying
common expressions in batches of Pig Latin scripts.

– We propose PigReuse, a multi-query optimization algorithm that merges equiv-
alent sub-expressions it identifies in directed acyclic graphs of NRAB operators
corresponding to PigLatin scripts. After identifying such reutilization opportuni-
ties, PigReuse produces an optimal merged plan where redundant computations
have been eliminated. PigReuse relies on an efficient Binary Integer Linear Pro-
gramming solver to select the best plan based on the cost function provided.

– We present extensions to our baseline PigReuse optimization algorithm to im-
prove its effectiveness, i.e., increase the number of common subexpressions it
detects.

– We present an initial experimental evaluation of our techniques. At the time of
this writing, the work continues within our group.

Chapter 6 concludes and outlines possible future directions.
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Chapter 2

State of the Art

This chapter presents the background needed by the presentation of the research
work performed in the thesis. The chapter organization derives from the following
considerations on the problem of (massively parallel) Web data management:

– One of the main characteristics of Web data is its heterogeneity, i.e., the varying
formats in which data is generated and consumed. In particular, tree-structured
formats, such as XML or JSON, have gained popularity and wide adoption over
the years. Section 2.1 recalls the essential features of the XML format as well as
the main research results in the area of XML data management, that are directly
relevant for the thesis.

– The notions of query containment and equivalence have been extensively stud-
ied by the research community. They are the basis for many important classical
optimization works that focus on problems such as multi-query optimization or
view selection. Section 2.2 provides a brief recall of the main results in this
area.

– The management of data in the cloud has been the focus of attention of many
researchers for the last few years, with studies around topics such as elasticity,
multi-tenancy, services pricing, etc. We briefly present the current state of the
art in Section 2.3.

– We overview parallel data processing frameworks and the opportunities they
bring towards tackling the challenges posed by Web-scale data storage and pro-
cessing, in Section 2.4.

2.1 The Extensible Markup Language (XML)

The Extensible Markup Language (XML) [W3C08] is a W3C standard used widely
for data exchange over the Web. It defines an easily readable semi-structured data
model that is generic and platform-independent. Moreover, it is a suitable format for
integrating data that do not abide by a strict schema.

5
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2.1.1 XML data model

We view XML data as a forest of ordered, node-labeled, unranked trees, as outlined
by the simple grammar:

Element e ::= li(a j. . . ak)
Tree d ::= si | e[f ]
Forest f ::= () | f,f | d

An element node has a label li and a (possibly empty) sequence of attributes
(a j. . . ak). In turn, a tree d is either a text node si, or an element node e having
a forest of children. In accordance with the W3C’s XML data model, each node is en-
dowed with a unique identity, which we materialize through the i, j ,k indices. Finally,
a forest f is a sequence of XML trees; () denotes the empty forest.

2.1.2 XML query languages

Over the years, multiple query languages have been proposed for navigating and
querying XML documents.

The most widely used and supported XML languages are XPath [W3C14a] and
XQuery [W3C14b], W3C standards whose recommendation has been updated re-
cently, as of April 2014. The current versions of both languages rely on a common
data model, namely XDM [W3C14c]. In the following, we provide a brief description
of these languages.

The formal description of the XML dialects supported in our work is delegated to the
subsequent chapters, as the dialects used in AMADA (Chapter 3) and PAXQuery (Chap-
ter 4) queries are different.

XPath is an expression language that allows navigation in XML documents to select
a sequence of nodes and values as described by the data model. The name of the
language derives from its most distinctive feature, the path expression, which provides
a means of navigating through the hierarchical structure of an XML document. The
current version of XPath is XPath 3.0; the language is a syntactic subset of XQuery
(described below).

XQuery is a functional language designed to write queries that are concise and easily
understood. It is also flexible enough to query a broad spectrum of XML information
sources, including both databases and documents.

XQuery is more powerful than XPath, and actually makes use of XPath to access
specific parts of the XML documents. The core of XQuery are FLWOR expressions,
where:

– For clauses bind each node of a sequence to a variable.
– Let clauses bind a sequence to a variable.
– Where clauses filter the nodes on a boolean expression.
– Order clauses sort (node and value) lists according to a specific order.
– Return clauses determine the output of the expression and is capable of con-

structing new XML data.
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Various built-in functions (including aggregate functions such as min, max etc.),
as well as user defined functions (UDFs) can be used in XQuery expressions, turning it
to a Turing-complete language.

2.1.3 XML data management

Along with the proliferation of available XML data, there was an increasing in-
terest in the data management community on methods for storing and querying effi-
ciently large amounts of XML data. We describe the most prominent efforts below.

2.1.3.1 Centralized systems

Many works have focused on employing relational database systems (RDBMSs, in
short) for the storage of XML documents. These works proposed techniques to map
the XML documents to relational tables [DFS99, FK99a, TVB+02, ZPR02, DTCO03].
Then, most of these systems translate XML queries into relational ones in order to
retrieve the data.

The most important commercial RDBMSs also provide support for XML, including
IBM DB2 [BCJ+05], Microsoft SQL Server [PCS+04] and Oracle Database [MLK+05].
Furthermore, the SQL/XML standard [ISO03] is an extension to the SQL language
introduced in 2003, providing the xml native datatype, which can be used to store
and retrieve XML documents.

Along with relational approaches, query processing in centralized settings has
been thoroughly studied through XML native formalisms [PWLJ04, DPX04, BGvK+06,
MHM06, RSF06, MPV09]. These works rely on algebras that decompose the process-
ing of a query into operators, such as: navigation (or tree pattern matching), which
given a path (or tree pattern) query, extracts from a document tuples of nodes match-
ing it; selection; projection; join etc.

Further, several open-source XML database systems and XQuery processors have
emerged over the last few years. Widely used examples include BaseX [Bas],
Saxon [Sax], and Qizx [Qiz].

Finally, classical data management optimization problems have also been ex-
tensively studied in the specific XML context. Examples include view-based query
rewriting [MFK01, BOB+04, ODPC06, ABMP07a, TYÖ+08, MKVZ11], view selec-
tion [MS05, TYÖ+08, TYT+09, KMV12], or view maintenance [BC10, CGM11,
BTCU12, BGMS13].

2.1.3.2 Distributed systems

The problem of distributed XML data management has been previously addressed
from many angles.

The Xyleme project [ACFR02] built a distributed XML data warehouse prototype,
and explored in this setting problems related to query optimization, change control
or data integration.
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[KOD10] studied the vertical partitioning of XML databases and associated opti-
mization techniques to efficiently execute queries in distributed systems.

The popularity of peer-to-peer overlay networks in the decade of the 2000s led to
the emergence of many works that focused on the problem of answering queries over
P2P XML databases. Some works in this area are described in [KP05, BC06, AMP+08,
KKMZ12].

2.2 Containment and equivalence-based optimizations

The notions of query containment and query equivalence are the basis for highly
related and largely studied problems such as multi-query optimization, view-based
query rewriting, and view selection.

2.2.1 Containment and equivalence

Given a query q and a database D, let q(D) denote the result of evaluating q over D.
Given two queries q1, q2, we say that q1 is contained in q2 if q1(D) ✓ q2(D) for any
database D. Further, q1 and q2 are equivalent if and only if q1(D) ⌘ q2(D) for any
database D.

Query containment and equivalence, that have been extensively theoretically stud-
ied [CM77, ASU79a, ASU79b, JK83, CV93, LW97, CR00], enable the comparison be-
tween different formulations of queries, and are crucial in reuse-based optimization
problems.

2.2.2 Multi-query optimization

Given a query workloadQ, multi-query optimization (MQO) is the problem of optimiz-
ing Q by identifying common sub-expressions, which can be evaluated only once and be
re-used to speed up the evaluation.

MQO has been the focus of research for many years. Early works [PS88, Sel88]
focused on expensive exhaustive algorithms and the solutions were not integrated
with existing system optimizers.
[RSSB00]was the first to integrate MQO into a Volcano-style optimizer, while [ZLFL07]

presents a completely integrated MQO solution that comprises the maintenance and
explotation of materialized views too. Finally, the recent [SLZ12] presents a MQO ap-
proach that takes into account physical requirements (e.g., data partitioning) of the
consumers of common sub-expressions in order to propose globally optimal execution
plans.

2.2.3 View-based optimizations

As with MQO, the foundation of view-based optimization is query containment
and equivalence. View-based optimization problems have received significant atten-
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tion by the research community because of their important potential for improving
query evaluation performance. We briefly recall the main relevant notions below.

Equivalent query rewriting. Given a query q and a set of views V , an equivalent
rewriting of q using V is an expression e(v1, v2, . . . , vk), vi 2 V , 1 i  k, over the views
in V , which is equivalent to q. In other words, for any database D, e(v1, v2, . . . , vk)(D) =
q(D).

In the above definition, complete rewritings are considered, that is: e only relies
on the views and may not even have access to the database D any more. Partial
rewritings have also been considered in the literature; a partial rewriting e0 of a query
q using the views in the set V is an expression e0(v1, v2, . . . , vk,D) relying on the views
and potentially on the database itself.

View-based query rewriting problem. Given a query q and a set of views V , the
problem of view-based query rewriting consists of finding all the equivalent rewritings
of q using the views in V .

The view-based query rewriting problem is declined in two variants, one con-
sidering only complete rewritings and another based on partial rewritings. A com-
prehensive survey on answering queries using views in relational databases is given
in [Hal01]. Cost-based rewritings [DPT99, GL01, PH01] have been used to optimize
query execution, while logical rewritings [YL87, LMSS95, AD98] are mostly used in
the context of data integration from different sources.

View selection. Given a query workload Q and a cost function c quantifying the cost
of evaluating any rewriting r of a query q 2 Q using a set of views v1, v2, . . . , vk, the
problem of view selection consists of chosing a set of views v⇤1, v⇤2, . . . , v⇤n so that the
overall cost of answering the workload queries, namely: ⌃q2Qc(e(q, v⇤1, v⇤2, . . . , v⇤n)), is
minimized.

View selection has been extensively studied, especially in the context of data ware-
houses [HRU96, Gup97, TS97, ACN00]. Formal results on the complexity of the view
selection problem are provided in [CHS02].

2.3 Cloud computing

The recent development of commercial cloud computing environments has
strongly impacted research and development in distributed software platforms.

From a business perspective, cloud-based platforms release the application owner
from the burden of administering the hardware, by providing elastic scaling up and
down of resources according to the demand as well as reliable execution of tasks even
in the face of machine failure.

From a research perspective, cloud platforms are interesting candidates to man-
age large data repositories. The new opportunities and potential performance issues
arising in cloud-based data management platforms have been extensively discussed
over the last few years [Aba09].
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2.3.1 Cloud principles

The general idea behind cloud computing is not novel, dating back to the 1960s.
Professor John McCarthy pronounced the following words at MIT’s centennial cele-
bration in 1963 1, which characterized what we know today as utility computing:

“Computing may someday be organized as a public utility just as the tele-
phone system is a public utility. Each subscriber needs to pay only for the
capacity he actually uses, but he has access to all programming languages
characteristic of a very large system . . . Certain subscribers might offer ser-
vice to other subscribers . . . The computer utility could become the basis of a
new and important industry.”

In the past, the form of utility computing that had enjoyed the biggest success
was grid computing [FK99b]. In particular, grid computing was widely used in the
research community over the last decade, e.g., to run large analysis processes on
scientific data.

Cloud computing combines ideas from the grid computing paradigm, and other
relevant technologies such as cluster computing, and distributed systems in gen-
eral [FZRL09, AFG+10]. In particular, it provides off-site access, i.e., through the
Internet, to shared resources in an on demand fashion. The main aspects that charac-
terize cloud computing solutions are:

– Scalability. The ability to add more computing resources and being able to retain
similar performance levels.

– Elasticity. The possibility to dynamically adapt to changes in the demand
quickly, by provisioning and deprovisioning resources autonomously.

– Pay as you go. Users can request resources on demand and pay only for what
they are using. This eliminates the need to invest up-front and to plan ahead.

– Maintenance and fault tolerance. The service provider is the responsible for
taking care of the burden of managing the systems and dealing with possible
failures, trying to avoid services outages.

The wide success of cloud computing is not technology-driven, but driven by
economies of scale [FZRL09, AFG+10]. Cloud computing allows companies to out-
source their IT infrastructure, and shifts the risk of provisioning to the cloud providers,
which further decreases the cost.

2.3.2 Commercial clouds

Cloud services providers have released offers following various models. The ser-
vices that they provide follow a pay as you go model that ensures that users pay for
only what they are using.

One of the models is Software as a Service (SaaS), which is based on the concept
of renting software from a service provider rather than buying it yourself. The service
provider hosts both the application and the data, so the end user does not have to

1. http://www.technologyreview.com/news/425623/the-cloud-imperative/

http://www.technologyreview.com/news/425623/the-cloud-imperative/
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worry about anything and can use the service from anywhere. SaaS is very effective
in lowering the costs of business as it provides an access to applications at a cost
normally far cheaper than a licensed application fee.

Platform as a Service (PaaS) offers a development platform. The end users of PaaS
write their own code and the provider executes that code in its infrastructure. PaaS
provides services to develop, test, deploy, host and maintain applications in the same
integrated development environment. Thus PaaS offers a more cost effective model
for application development and delivery.

Infrastructure as a Service (IaaS) delivers the computing infrastructure as a fully
outsourced service. The user can buy the infrastructure according to the requirements
at any particular moment in an elastic manner instead of buying an infrastructure that
might not be used for months. Virtualization enables IaaS providers to offer almost
unlimited instances of servers to customers and make cost-effective use of the hosting
hardware.

Several major IT companies have positioned themselves as providers of technology
for these scenarios, e.g., Amazon Web Services [AWS], Google Cloud Compute [GCP],
or Windows Azure [WA]. Further information about the offer of each of these companies
is given in Chapter 3, which builds our Web data repository using services they provide.

2.3.3 Data repositories in commercial clouds

The proliferation of commercial cloud providers has led to an increasing interest
in studying data storage and processing using the services that they offer.

The first work to propose a database architecture that exploited a commer-
cial cloud, namely Amazon Web Services, was [BFG+08]. They build a relational
database with a strong focus on protocols to provide certain transactional guarantees,
e.g., atomicity or durability, while preserving the scalability and availability provided
by the cloud. In turn, different alternative architectures for database applications in
the cloud are studied in [KKL10], which evaluates the impact of the architectural
choice on performance, scalability and cost of the application.

2.3.4 Pricing in the cloud

Recent works have focused on providing pertinent cost models for data manage-
ment in the cloud. The novelty comes, on one hand, from the monetary costs as-
sociated to running a cloud application, and on the other hand, from the elasticity
associated to managing data in the cloud.

The correlation between the consistency guarantees that a database running in
the cloud can offer, and its associated cost, is studied in [KHAK09]. Further, different
policies to choose among these consistency protocols are proposed.

Trade-offs between providing efficient query services and maintaining a profitable
cloud are discussed in [DKA09]. They propose an economic model for self-tuned
cloud caching of data, that encouraged high-quality service while reinforcing the
profit. An adaptive optimal pricing schema is then proposed in [KDF+11].
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The subject of building data access support structures (indexes and/or materi-
alized views) to be shared by several applications running in the cloud is studied
in [KDGA11]. In this context, the decision whether or not an index is useful (whether
the costs associated to materializing the index are worth the improvement they bring
to the multiple hosted applications) needs to be taken considering the history of a
query mix and predicting the future use based on this history.

A framework that aim at scheduling data processing workflows that involve arbi-
trary data processing operators is presented in [KSTI11]. The schedule can be created
attending to different goals, e.g. minimize completion time given a fixed budget or
minimize monetary cost given a deadline.

2.3.5 Reliability, multi-tenancy and elasticity

Cloud-based data management raises several issues related to the distributed sys-
tems and reliability areas.

First of all, cloud-hosted data management is very often a multi-tenancy context,
where several applications, potentially running for distinct organizations, share re-
sources within the same distributed computation infrastructure. This implies that
such applications have to compete for resources, but also that the global optimiza-
tion and the pricing of resource consumption needs to take into account this sharing.
The Kairos system [CJMB11] tries to consolidate databases onto a few physical ma-
chines and hence consume less energy. The process of consolidation involves analyz-
ing the load characteristics of multiple dedicated database servers and packing their
workloads into a few physical machines, reducing the resources consumed without
changing the application performance.

Second, one of the core advantages of the cloud, namely, elastic allocation of
resources to various applications, raises a set of issues on how to redistribute data
across various cloud machines when scaling up and down an application. Also of im-
portance, given the large sets of machines that may be involved in a given data man-
agement task, is coping with possible failures. The problem of migrating databases
across several machines with minimal service interruption and no downtime, which
is critical to allow lightweight elastic scaling, is studied in [EDAA11]. They propose a
technique to migrate a database in a shared nothing transactional database architec-
ture providing ACID guarantees during migration and/or failures.

2.4 Parallel processing systems

Besides parallel databases [DGG+86, FKT86], to scale complex data processing
up to very large data volumes applications are increasingly relying on implicit par-
allel frameworks [DG04, BEH+10, ZCD+12] built on top of distributed filesystems.
The main advantage of using such frameworks is that processing is distributed across
many sites without the application having to explicitly handle data fragmentation,
fragment placement etc.
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2.4.1 Google File System and MapReduce

Google File System. The Google File System (GFS) [GGL03] was introduced by
Google to meet their rapidly increasing data storage demands. GFS is a scalable dis-
tributed file system that provides fault tolerance guarantees while running on large
shared-nothing clusters of commodity machines. GFS is optimized for workloads that
consist mainly of (i) large streaming reads, and (ii) writes that append data to exist-
ing or new files, rather than overwriting existing data.

MapReduce. The original MapReduce [DG04] introduces a programming model and
an associated implementation built on top of GFS. Inspired by the map and reduce
functions commonly used in functional programming, MapReduce automatically par-
allelizes and executes programs over the files stored in GFS.

A MapReduce job consists mainly of two phases:

1. A map phase that takes key/value pairs as input and applies a user function on
each of them, producing intermediary results in the form of key/value pairs.

2. A reduce phase that groups together all key/value pairs sharing the same key
that were generated by the previous step, and invokes a user function once
for each group. Between the map and the reduce phases, the data is shuffled,
i.e., exchanged and merge-sorted.

Further, a reader function controls how the key/value pairs needed as input to the
map phase are generated from the files in GFS, while a writer function describes how
the output of the reduce phase is written to GFS.

As the MapReduce system takes care of tasks like partitioning the input data,
scheduling the program’s execution across a set of machines or handling machines
failures, programmers are only requested to specify the user functions used in the
map and reduce phases in order to utilize the resources of a large distributed system.

2.4.2 The Hadoop ecosystem

Soon after GFS and MapReduce were proposed by Google, Apache Hadoop [Had]
was released. The Hadoop framework implemented open-source equivalents of the
aforementioned systems, namely the Hadoop Distributed File System (HDFS) and
Hadoop MapReduce. Its development was powered by contributors from enterprises
such as Yahoo!, Facebook, Twitter, and other Web companies, which had a clear inter-
est in using the platform to run a wide variety of data intensive tasks.

Since Hadoop was released, the number of systems built around it has not stop in-
creasing, e.g., Apache Giraph [Gir] for graph data processing or Apache Storm [Sto]
for real-time stream data processing. Recently, Apache Hadoop YARN [VMD+13] has
been released. YARN decouples the resource management from the processing model,
i.e., MapReduce, which had been identified as one of the shortcomings of Hadoop.
This will enable a broader array of interaction patterns for data stored in HDFS,
as the YARN-based architecture would not be anymore constrained to MapReduce.
Surely, the emergence of YARN will only accelerate the proliferation of new proposals
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built around the Hadoop ecosystem. In fact, new companies such as Cloudera 2 or
Hortonworks 3 have already built their complete offer of data analytics services for
enterprises around the Hadoop ecosystem.

2.4.3 Complex operations using MapReduce

Since MapReduce appeared, many works from industry and academia have fo-
cused on evaluating efficiently complex operations using the proposed model. The
recents [LOOW14] and [DN14] provide detailed overviews on the state of the art on
data processing using MapReduce.

2.4.4 Higher-level languages on top of MapReduce

As practitioners argued that MapReduce was too low-level and rigid to express
some complex data processing tasks in a straightforward fashion, there was a prolifer-
ation of proposals for automatically translating higher-level languages (more declar-
ative) into massively parallel frameworks such as MapReduce.

Pig Latin [ORS+08] is a dataflow language which allows specifying procedural style
programs performing large-scale data processing tasks. Pig Latin is implemented into
the Pig system [Piga] on top of Hadoop. After a Pig Latin script is parsed, a plan
consisting of logical operators arranged in a DAG is generated and optimized. Then
this plan is compiled in several stages into MapReduce. Pig Latin uses a nested data
model, but it limits the levels of nested processing in its queries to guarantee accept-
able parallelization of its computation. Further information about Pig Latin is given in
Chapter 5, which proposes a novel reuse-based optimizer for the language.

Hive [TSJ+10] is a data warehousing solution built on top of Hadoop. Hive structures
data into well-understood database concepts like tables, columns rows, and partitions.
These structures are mapped into HDFS, and the corresponding metadata is kept in a
metastore. Hive uses a nested relational data model, so complex types such as lists or
maps can be embedded into values. Finally, queries are expressed in HiveQL, a subset
of SQL extended with some features that are useful in their warehouse environment,
and which is compiled into MapReduce.

Jaql [BEG+11] is a declarative scripting language tailored analytics of JSON data us-
ing Hadoop MapReduce. Jaql treats functions as first class citizens. For instance, Jaql
expressions can be encapsulated in functions, and these functions can be parameter-
ized later on at runtime. Moreover, Jaql’s evaluation plan is entirely expressible in
Jaql’s syntax. This means that Jaql exposes every internal physical operator as a func-
tion in the language, allowing users to combine different levels of abstraction within
a single script.

2. http://www.cloudera.com/
3. http://hortonworks.com/

http://www.cloudera.com/
http://hortonworks.com/
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2.4.5 XML data management on Hadoop

Recently, several works have studied XML storage and query processing techniques
using Hadoop.

MRQL [FLGP11] proposes a simple SQL-like XML query language implemented
through a few operators directly compilable into MapReduce. MRQL queries may be
nested, and the XML navigation supported is XPath. In turn, ChuQL [KCS11] is an
XQuery extension that exposes the MapReduce framework to the developer in order
to distribute computations among XQuery engines.

Other recent works have proposed XML document partitioning techniques for
HDFS. These approaches aim at querying efficiently a very large XML document us-
ing MapReduce. For instance, HadoopXML [CLK+12] statically partitions an input
document into several blocs before storing it in HDFS, and some path information is
added to blocs to avoid loss of structural information. The system assumes the query
workload to be known in advance. The recent approach proposed in [BCM+13] dy-
namically fragments the input document by means of path information extracted from
queries and updates.

2.4.6 Reuse-based optimizations on Hadoop

Multiple works have focused on avoiding redundant processing for a batch of
MapReduce jobs by sharing their (intermediate) results.
[AKO08] studied the problem of scheduling jobs that need to access the same files

simultaneously. They aim at maximizing the rate of processing these files by sharing
scans of the same file as aggressively as possible, which is important for jobs whose
execution time is dominated by data access.

MRShare [NPM+10] aims at identifying different jobs that share portions of iden-
tical work, so that those parts do not need to be recomputed from scratch. The main
focus of MRShare is to maximize the total I/O savings, and therefore, sharing oppor-
tunities are identified in terms of sharing scans and sharing map output.

ReStore [EA12] is a system that manages the storage and reuse of intermediate re-
sults produced by workflows of MapReduce jobs. ReStore is implemented as an exten-
sion to the Pig system [Piga]. It is capable of reusing the output of whole MapReduce
jobs, but it also creates additional reuse opportunities by materializing and storing the
output of query execution operators that are executed within a MapReduce job. In
order to do that, it maintains, together with a file storing a job’s output, the physical
execution plan of the query and some statistics about the job that produced it, as well
as how frequently this output is used by other workflows.

Finally, the recent [WC13] proposes two new techniques for the optimization of a
batch of MapReduce jobs: (i) a generalization of MRShare that allows further sharing
of map outputs, and (ii) a materialization and reutilization technique that relies on
choosing an appropiate execution order of jobs in the input batch. Further, it presents
an algorithm to produce an optimal plan for a given batch of jobs, by partitioning
them into groups and assignment a different processing technique to each group.
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2.4.7 Other parallel processing stacks

Following the success of the original MapReduce proposal, other systems and mod-
els have been proposed, which try to extend the MapReduce paradigm by eliminating
some shortcomings of the original model and extending its expressive power.

Stratosphere 4 [ABE+14, Str] proposes a new stack on top of HDFS. In particular, the
key components of the system are:

– A new programming model, the PArallelization ConTracts [BEH+10] (PACT, in
short). PACT extends MapReduce by (i) manipulating records with any number
of fields, instead of key/value pairs, (ii) proposing a richer set of operators
based on second-order functions, and (iii) allowing one parallel operator to
receive as input the outputs of several other such operators.

– Its own high performance execution engine, Nephele [WK09]. A cost-based op-
timizer compiles PACT programs down to dataflow graphs that can be massively
parallelized by the Nephele engine.

Stratosphere is a very active project, and recent works have proposed an opti-
mizer for PACT plans [HPS+12], or have studied how to efficiently integrate the ex-
ecution of iterative processing tasks into the platform [ETKM12, SETM13]. Further,
[HRL+12] presents Meteor, a scripting language heavily inspired by Jaql [BEG+11]
that compiles into PACT.

Further information about the Stratosphere system is given in Chapter 4, as we build
our massively parallel XQuery processor on top of the PACT model.

Apache Spark [ZCF+10, Spa] is another large-scale data processing engine that can
run on top of HDFS. The main abstraction that Spark provides is the Resilient Dis-
tributed Dataset [ZCD+12] (RDD, in short), which is a collection of elements parti-
tioned across the nodes of the cluster that can be operated on in parallel. Two types of
operations can be applied on an RDD: a transformation, which creates a new dataset
from an existing one, and an action, which returns a value to the driver program after
running a computation on the dataset. Further, users may ask Spark to persist an
RDD in memory, allowing it to be reused efficiently across parallel operations, which
makes the model specially well suited for executing bulk iterative algorithms. Finally,
RDDs can automatically recover from node failures.

AsterixDB [BBC+11, Ast] is another effort that proposes a new parallel semistruc-
tured information management system, and whose architectural changes are more
radical with respect to the original MapReduce and the approaches presented
above. AsterixDB consists of three main components: (i) the Hyracks execution en-
gine [BCG+11], (ii) the Algebricks algebra, which compiles into parallel plans ex-
ecutable by Hyracks, and (iii) the Asterix Query Language, or AQL in short, based
on FLWOR expressions, that compiles into Algebricks. Although Algebricks is the tar-
get for AQL, it is currently used as the compilation target for other declarative query
languages e.g., HiveQL or Pig Latin. Moreover, instead of working on top of HDFS,

4. Stratosphere has been recently accepted as an Apache incubator project and will be renamed to
Apache Flink (http://incubator.apache.org/projects/flink.html).

http://incubator.apache.org/projects/flink.html
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AsterixDB proposes its own native storage manager with support for indexes, etc.
The VXQuery project [VXQ] is an ongoing effort that aims at parallelizing XQuery

in the AsterixDB system by translating XQuery into the Algebricks algebra.

2.5 Conclusion

In this chapter we presented XML, a popular data model for representing and
sharing data on the Web. Further, we discussed different optimization techniques
whose foundations are in the query equivalence and containment notions. Then, we
introduced briefly the ideas behind the cloud computing concept, and the research
challenges it raises. Finally, we presented different frameworks that rely heavily on
parallelization to scale processing up to large data volumes.
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Chapter 3

AMADA: Web Data Repositories in the
Cloud

In this chapter, we present AMADA, an architecture for warehousing large-scale
Web data in commercial cloud platforms. AMADA operates in a Software as a Service
(SaaS) approach, allowing users to upload, store, and query large volumes of Web
data. Since cloud users support monetary costs directly connected to their consump-
tion of resources, our focus in this work is not only on query performance from an
execution time perspective, but also on the monetary costs associated to this process-
ing. In particular, we study the applicability of several content indexing strategies, and
show that they lead not only to reducing query evaluation time, but also, importantly,
to reducing the monetary costs associated with the exploitation of the cloud-based
warehouse.

An early version of this work was presented in a workshop [CRCM12], while this
chapter closely follows the international conference publication [CRCM13]. RDF data
management using the same architecture that we present here was studied in parallel
in the team, including as part of this thesis work [BCRG+14]. The AMADA system
was demonstrated in [AABCR+12], and finally open-sourced in March 2013 1.

3.1 Introduction

Over the last few years, big IT companies such as Amazon, Google or Microsoft
have started providing an increasing number of cloud services built on top of their
infrastructure. Using these commercial cloud platforms, organizations and individuals
can take advantage of a deployed infrastructure and build their applications on top
of it. An important feature of such platforms is their elasticity, i.e., the ability to
allocate more (or less) computing power, storage, or other services, as the application
demands grow or shrink. Cloud services are rented out based on specific service-level
agreements (SLAs) characterizing their performance, reliability etc.

1. http://cloak.saclay.inria.fr/research/amada/
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Although the services offered by public clouds vary, they all provide some form
of scalable, durable, highly-available store for files, or (equivalently) binary large
objects. Cloud platforms also provide virtual machines (typically called instances)
which are started and shut down as needed, and on which one can actually deploy
code to be run. This gives a basic roadmap for warehousing large volumes of Web
data in the cloud in a Software as a Service (SaaS) mode:

– To store the data, load it in the cloud-based file store.
– To process a query, deploy some instances, have them read data from the file

store, compute query results and return them.

Clearly, the performance (response time) incurred by this processing is of impor-
tance; however, so are the monetary costs associated to this scenario, that is, the costs
to load, store, and process the data for query answering. The costs billed by the cloud
provider, in turn, are related to the total effort (or total work), in other terms, the to-
tal consumption of all the cloud resources, entailed by storage and query processing.
In particular, when the warehouse is large, if query evaluation involves all (or a large
share of) the data, this leads to high costs for: (i) reading the data from the file store
and (ii) processing the query on the data.

In this chapter, we investigate the usage of content indexing, as a tool to both
improve query performance, and reduce the total costs of exploiting a warehouse of
Web data within the cloud.

We focus on tree-structured data, and in particular XML, due to the large adoption
of this and other tree-shaped formats such as JSON, and we consider the particular
example of the Amazon Web Services (AWS, in short) platform, among the most
widely adopted, and also target of previous research works [BFG+08, SDQR10]. Since
there is a strong similarity among commercial cloud platforms, our results could easily
carry on to another platform (we briefly discuss this in Section 3.2). The contributions
of the chapter are the following:

– A generic architecture for large-scale warehousing of complex structured data
(in particular, tree-shaped data) in the cloud. Our focus is on building and
exploiting various kinds of indexing strategies to simultaneously speed up pro-
cessing and reduce cloud resource consumption (and thus, warehouse operating
costs);

– A concrete implemented platform following this architecture, demonstrating its
practical interest and validating the claimed benefits of our indexes through
experiments on a 40 GB dataset. We show that indexing can reduce processing
time by up to two orders of magnitude and costs by one order of magnitude;
moreover, index creation costs amortize very quickly as more queries are run.

The remainder of this chapter is organized as follows. Section 3.2 describes
AMADA’s architecture, while Section 3.3 introduces its associated monetary cost
model. Section 3.4 presents our query language, while Section 3.5 focuses on cloud-
based indexing strategies. Section 3.6 details our system implementation on top of
AWS, while Section 3.7 provides our experimental evaluation results. Section 3.9
discusses related works. We then conclude and outline future directions.
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Figure 3.1: Architecture overview.

3.2 Architecture

We now describe AMADA, our proposed architecture for Web data warehousing.
To build a scalable, inexpensive data store, we store documents as files within Ama-
zon’s Simple Storage Service (S3, in short). To host the index, we have different
requirements: fine-grained access, and fast look-up. Thus, we rely on Amazon’s Dy-
namoDB efficient key-value store for storing and exploiting the index. Within AWS,
instances can be deployed through the Elastic Compute Cloud service (EC2, in short).
We deploy EC2 instances to (i) extract from the loaded data index entries, and send
them to Dynamo DB’s index and (ii) evaluate queries on those subsets of the database
resulting from the query-driven index lookups. Finally, we rely on Amazon Simple
Queue Service (SQS, in short) asynchronous queues to provide reliable communica-
tion between the different modules of the application. Figure 3.1 depicts this archi-
tecture.

User interaction with the system involves the following steps.
– When a document arrives (1), the front end of our application stores it in the file

storage service (2). Then, the front end module creates a message containing
the reference to the document and inserts it into the loader request queue (3).
Such messages are retrieved by any of the virtual machines running our index-
ing module (4). When a message is retrieved, the application loads the docu-
ment referenced by the message from the file store (5) and creates the index
data that is finally inserted into the index store (6).

– When a query arrives (7), a message containing the query is created and in-
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Provider File store Key-value store Computing Queues

Amazon Web Amazon Simple Amazon DynamoDB, Amazon Elastic Amazon Simple
Services [AWS] Storage Service Amazon SimpleDB Compute Cloud Queue Service
Google Cloud Google Cloud Google High Google Compute Google Task
Platform [GCP] Storage Replication Datastore Engine Queues
Windows Windows Azure Windows Azure Windows Azure Windows Azure
Azure [WA] BLOB Storage Tables Virtual Machines Queues

Table 3.1: Component services from major commercial cloud platforms.

serted into the query request queue (8). Such messages are retrieved by any of
the virtual instances running our query processor module (9). The index data is
then extracted from the index store (10). Index storage services provide an API
with rather simple functionalities typical of key-value stores, such as get and put
requests. Thus, any other processing steps needed on the data retrieved from
the index are performed by a standard XML querying engine (11), providing
value- and structural joins, selections, projections etc.
After the document references have been extracted from the index, the local
query evaluator receives this information (12) and the XML documents cited
are retrieved from the file store (13). Our framework includes “standard” XML
query evaluation, i.e. the capability of evaluating a given query q over a given
document d. This is done by means of a single-site XML processor, which one
can choose freely. Thus, the virtual instance runs the query processor over the
documents and extracts the results for the query.
Finally, we write the results obtained in the file store (14) and we create a
message with the reference to those results and insert it into the query response
queue (15). When the message is read by the front end (16), the results are
retrieved from the file store (17) and returned (18).

Scalability, parallelism and fault-tolerance. The architecture described above ex-
ploits the elastic scaling of the cloud, for instance increasing and decreasing the
number of virtual machines running each module. The synchronization through the
message queues among modules provides inter-machine parallelism, whereas intra-
machine parallelism is supported by multi-threading our code. We have also taken
advantage of the primitives provided by message queues, in order to make our code
resilient to a possible virtual instance crash: if an instance fails to renew its lease on
the message which had caused a task to start, the message becomes available again
and another virtual instance will take over the job.

Applicability to other cloud platforms. While we have instantiated the above archi-
tecture based on AWS, it can be easily ported to other well-known commercial clouds.
Table 3.1 shows the services available in the Google and Microsoft cloud platforms,
corresponding to the ones we use from AWS. It can be easily seen that these platforms
are largely similar in terms of their provided software suites.
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3.3 Application costs

A relevant question in a cloud-hosted application context is, how much will this
cost? Commercial cloud providers charge specific costs for the usage of their services.
This section presents our model for estimating the monetary costs of uploading, in-
dexing, hosting and querying Web data in a commercial cloud. Section 3.3.1 presents
the metrics used for calculating these costs, while Section 3.3.2 introduces the com-
ponents of the cloud provider’s pricing model relevant to our application. Finally,
Section 3.3.3 proposes the cost model for storing and indexing the data, and for an-
swering queries.

3.3.1 Data set metrics

The following metrics capture the impact of a given dataset, indexing strategy and
query on the charged costs.

Data-dependent metrics. Given a set of documents D, |D| and s(D) indicate the
number of documents in D, and the total size (in GB) of all the documents in D,
respectively.

Data- and index-determined metrics. For a given set of documents D and indexing
strategy I , let |put(D, I)| be the number of put requests needed to store the index for
D based on strategy I .

Let t(D, I) be the time needed to build and store the index for D based on strategy
I . The meaningful way to measure this in our framework (recall the processing stages
outlined in Section 3.2) is: the time elapsed between

– the moment when the first message (document loading request) entailed by loading
D is retrieved from our application’s queue, until

– the moment when the last such message was deleted from the queue.
To compute the index size, we use:
– sr(D, I) is the raw size (in GB) of the data extracted from D according to I .
– Cloud key-value stores (in our case, DynamoDB) create their own auxiliary data

structures, on top of the user data they store. We denote by ovh(D, I) the size
(in GB) of the storage overhead incurred for the index data extracted from D
according to I .

Thus, the size of the data stored in an indexing service is:

s(D, I) = sr(D, I) + ovh(D, I)

Data-, index- and query-determined metrics. First, let s(q,D) be the size (in GB)
of the results for query q over the documents set D.

When using the indexing strategy I , let |get(q,D, I)| be the number of get oper-
ations needed to look up documents that may contain answers to q, in an index for
D built based on the strategy I . Similarly, let Dq

I be the subset of D resulting from
look-up on the index built based on strategy I for query q.
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Let t(q,D) be the time needed by the query processor to answer a query q over a
dataset D without using any index, and t(q,D, I ,Dq

I ) be the time to process q with the
support of an index built according to the strategy I (thus, on the reduced document
set Dq

I ), respectively. We measure it as the time elapsed from the moment the message
with the query was retrieved from the queue service to the moment the message was
deleted from it.

3.3.2 Cloud services costs

We list here the costs spelled out in the cloud service provider’s pricing policy,
which impact the costs charged by the provider for our Web data management appli-
cation.

File storage costs. We consider the following three components for calculating costs
associated to a file store.

– ST$
m,GB is the cost charged for storing and keeping 1 GB of data in a file store for

one month.
– ST$

put is the price per document storage operation request.
– ST$

get is the price per document retrieval operation request.

Indexing costs. We consider the following components for calculating the index store
associated costs.

– IDX$
m,GB is the cost charged for storing and keeping 1 GB of data in the index

store for one month.
– IDX$

put is the cost of a put API request that inserts a row into the index store.
– IDX$

get is the cost of a get API request that retrieves a row from the index store.

Virtual instance costs. VM$
h is the price charged for running for one hour a virtual

machine. As cloud providers offer different types of instances with different hardware
specifications, the price depends on the kind of virtual machine we choose to use.

Queue service costs. QS$ is the price charged for each request to the queue service
API, e.g., send message, receive message, delete message, renew lease etc.

Data transfer. The commercial cloud providers considered in this work do not charge
anything for data transferred to or within their cloud infrastructure. However, data
transferred out of the cloud incurs a cost: egress$

GB is the price charged for transferring
1 GB out of the cloud.

3.3.3 Web data management costs

We now show how to compute, based on the data-, index- and query-driven met-
rics (Section 3.3.1), together with the cloud service costs (Section 3.3.2), the costs in-
curred by our Web data storage architecture in a commercial cloud. Table 3.2 provides
an overview of the notations introduced throughout Section 3.3.1 and Section 3.3.2.
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Notation Description

D Documents set.
I Indexing strategy.
q Query.
Dq

I Subset of D resulting from look-up for q on the index built based on I .
s(D) Total size of the documents in D.
s(D, I) Total size of the index built for D based on strategy I .
s(q,D) Total size of the results for q over the documents in D.
|D| Number of documents in D.
|put(D, I)| Number of put operations to store the index for D based on strategy I .
|get(q,D, I)| Number of get operations to look up documents that may contain answers

to q in an index for D built based on the strategy I .
t(D, I) Time to build and store the index for D based on strategy I .
t(q,D) Time to answer q over D without using any index
t(q,D, I ,Dq

I ) Time to answer q over D using an index built according to the strategy I
that returns a reduced document set Dq

I .

ST$
m,GB Price charged for storing 1 GB of data for one month (file store).

ST$
put Price per storage operation request (file store).

ST$
get Price per retrieval operation request (file store).

IDX$
m,GB Price charged for storing 1 GB of data for one month (index store).

IDX$
put Price per storage operation request (index store).

IDX$
get Price per retrieval operation request (index store).

VM$
h Price charged for running a virtual machine for one hour.

QS$ Price per operation request to the queue service.
egress$

GB Price charged for transferring 1 GB out of the cloud.

Table 3.2: Data set metrics and cloud services costs associated notations.

Storing and indexing the data. Given a set of documents D, we calculate the cost of
uploading it into a file store as follows:

ud$(D) = ST$
put⇥ |D|+QS$⇥ |D|

Thus, the cost of building the index for D by means of the indexing strategy I is:

ci$(D, I) = ud$(D) + ST$
get⇥ |D|+ IDX$

put⇥ |put(D, I)|
+ VM$

h⇥ t(D, I) +QS$⇥ 2⇥ |D|

Note that we need two queue service requests for each document: the first obtains
the URI of the document that needs to be processed, while the second deletes the
message from the queue when the document has been indexed.

The cost of storing D in the file store and the index structure created for D ac-
cording to I in the index store for one month is calculated as:

st$
m(D, I) = ST$

m,GB⇥ s(D) + IDX$
m,GB⇥ s(D, I)
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Querying. First, we estimate the cost incurred by the front-end for sending query q
and retrieving its results as:

rq$(q,D) = ST$
get+ egress$

GB ⇥ s(q,D) +QS$⇥ 3

Three queue service requests are issued: the first one sends the query, the second
one retrieves the reference to the query results, and the third one deletes the message
retrieved by the second request.

The cost for answering a query q without using any index is calculated as follows:

cq$(q,D) = rq$(q,D) + ST$
get⇥ |D|+ ST$

put

+ VM$
h⇥ t(q,D) +QS$⇥ 3

Note that, again, three queue service requests are issued: the first one retrieves the
message containing the query, the second one sends the message with the reference
to the results for the query, while the third removes the message with the query from
the corresponding queue. The same holds for the formula below which calculates the
cost of evaluating a query q over D indexed according to I :

cq$(q,D, I ,Dq
I ) = rq$(q,D) + IDX$

get⇥ |get(q,D, I)|+ ST$
get⇥ |D

q
I |+ ST$

put

+ VM$
h⇥ t(q,D, I ,Dq

I ) +QS$⇥ 3

This finalizes our monetary cost model for Web data stores in commercial clouds,
according to the architecture we described in Section 3.2. Some parameters of the
cost model are well-known (those determined by the input data size and the provider’s
cost policy), while others are query- and strategy-dependent (e.g., how may docu-
ments match a query etc.) In Section 3.7 we measure actual charged costs, where the
query- and strategy-dependent parameters are instantiated to concrete operations.
These measures allow to highlight the cost savings brought by our indexing.

3.4 Query language

We consider queries are formulated in an expressive fragment of XQuery, amount-
ing to value joins over tree patterns. For illustration, Figure 3.2 depicts some queries
in a graphical notation which is easier to read. The translation from this tree pattern
language to XQuery syntax, as well as the formal pattern semantics, can be found
in [MKVZ11].

In a tree pattern, each node is labeled either with an XML element or attribute
name. By convention, attribute names are prefixed with the @ sign. Parent-child
relationships are represented by single lines while ancestor-descendant relationships
are encoded by double lines.

Each node corresponding to an XML element may be possibly annotated with
(i) the label val if the string value of the element (obtained by concatenating all its
text descendants) is needed, and/or (ii) the label cont if the full XML subtree rooted at
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q1

painting

nameval painter

nameval

q2

painting

descriptioncont year=1854

q3

painting

namecontains(Lion) painter

name

lastval

q4

painting

nameval painter

name

last=Manet

year1854<val1865

q5

museum

nameval painting

@id

painting

@id painter

name

last=Delacroix

Figure 3.2: Sample queries.

this node is needed. We support these different levels of information for the following
reasons. The value of a node is used in the XQuery specification to determine whether
two nodes are equal (e.g., whether the name of a painter is the same as the name
of a book writer). The content is the natural granularity of XML query results (full
XML subtrees are returned by the evaluation of an XPath query). A tree pattern node
corresponding to an XML attribute may be annotated with the label val, denoting that
the string value of the attribute is returned. Further, any node may also be annotated
with one among the following predicates on its value:

– An equality predicate of the form = c, where c is some constant, imposing that
the node value is equal to c.

– A containment predicate of the form contains(c), imposing that the node value
contains the word c.

– A range predicate of the form [a  val  b], where a and b are constants such
that a < b, imposing that its value is inside that range.

Finally, a dashed line connecting two nodes joins two tree patterns, on the condi-
tion that the value of the respective nodes is the same on both sides.

For instance, in Figure 3.2, q1 returns the pair (painting name, painter name) for
each painting, q2 returns the descriptions of paintings from 1854, while q3 returns
the last name of painters having authored a painting whose name includes the word
Lion. Query q4 returns the name of the painting(s) by Manet created between 1854
and 1865, and finally query q5 returns the name of the museum(s) exposing paintings
by Delacroix.

3.5 Indexing strategies

Many indexing schemes for semistructured data, and in particular XML, have been
devised in the literature, e.g., [GW97, KBNK02, MS99]. In this Section, we explain
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Name Indexing function

LU ILU(d) = {(key(n), (URI(d),✏)) | n 2 d}
LUP ILUP(d) = {(key(n), (URI(d), {inPath1(n), inPath2(n), . . . , inPathy(n)})) | n 2 d}
LUI ILUI(d) = {(key(n), (URI(d), id1(n)kid2(n)k . . .kidz(n))) | n 2 d}
2LUPI I2LUPI(d) = {[(key(n), (URI(d), {inPath1(n), inPath2(n), . . . , inPathy(n)})),

(key(n), (URI(d), id1(n)kid2(n)k . . .kidz(n)))] |n 2 d}
Table 3.3: Indexing strategies.

how we adapted a set of relatively simple XML indexing strategies, previously used in
other distributed environments [AMP+08, GWJD03] into our setting, where the index
is built within a heterogeneous key-value store.

Notations. Before describing the different indexing strategies, we introduce some
useful notations.

In the following, d stands for an XML document, while q is a query expressed in
the language described in Section 3.4. We denote by URI(d) the Uniform Resource
Identifier (or URI, in short) of d. For a given node n 2 d, we denote by inPath(n) the
label path going from the root of d to the node n, and by id(n) the node identifier (or
ID, in short). We rely on simple (pre, post, depth) identifiers used, e.g., in [AKJP+02]
and many follow-up works. Such IDs allow identifying if node n1 is an ancestor of
node n2 by testing whether n1.pre<n2.pre and n1.post<n2.post. If this is the case, n1
is the parent of n2 iff n1.depth+1=n2.depth.

For a given node n 2 d, the function key(n) computes a string key based on which
n’s information is indexed. Let e, a and w be three constant string tokens, and k
denote string concatenation. We define key(n) as:

key(n) =

ekn.label if n is an XML element
akn.name if n is an XML attributeakn.namekn.val
wkn.val if n is a word

Observe that we extract two keys from an attribute node, one to reflect the at-
tribute name and another to reflect its value; these help speed up specific kinds of
queries, as we will see. To simplify, we omit the k when this does not lead to confu-
sion.

Indexing strategies. An indexing strategy I is a function which, from a set of doc-
uments, constructs a set of tuples of the form (k, (a, v+)+)+. In other words, I(d)
represents the set of keys k that must be added to the index store to reflect the new
document d, as well as the attributes to be stored on the respective key. Each attribute
contains a name a and a set of values v.

Table 3.3 depicts the proposed indexing strategies. We explain them in detail in
the following sections.
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“delacroix.xml”

painting

@id

‘1854-1’

name

‘The Lion Hunt’

painter

name

first

‘Eugene’

last

‘Delacroix’

“manet.xml”

painting

@id

‘1863-1’

name

‘Olympia’

painter

name

first

‘Edouard’

last

‘Manet’

Figure 3.3: Sample XML documents.

3.5.1 Strategy LU (Label-URI)

Index. For each node n 2 d, strategy LU associates to the key key(n) the pair
(URI(d),✏) where ✏ denotes the null string. For example, applied to the documents
depicted in Figure 3.3, LU produces among others these tuples:

key attribute name attribute values

ename “delacroix.xml” ✏
“manet.xml” ✏

aid “delacroix.xml” ✏
“manet.xml” ✏

aid 1863-1 “manet.xml” ✏
wOlympia “manet.xml” ✏

Look-up. The look-up task consists of finding, by exploiting the index, and as pre-
cisely as possible, those parts of the document warehouse that may lead to query
answers.

Index look-up based on the LU strategy is quite simple: all node names, attribute
and element string values are extracted from the query and the respective look-ups
are performed. Then URI sets thus obtained are intersected. The query is evaluated
on those documents whose URIs are part of the intersection.

3.5.2 Strategy LUP (Label-URI-Path)

Index. For each node n 2 d, LUP associates to key(n) the attribute:

(URI(d), {inPath1(n), . . . , inPathy(n)})
On the “delacroix.xml” and “manet.xml” documents shown in Figure 3.3, ex-

tracted tuples include:

key attribute name attribute values

ename “delacroix.xml” /epainting/ename, /epainting/epainter/ename
“manet.xml” /epainting/ename, /epainting/epainter/ename

aid “delacroix.xml” /epainting/aid
“manet.xml” /epainting/aid

aid 1863-1 “manet.xml” /epainting/aid 1863-1
wOlympia “manet.xml” /epainting/ename/wOlympia



30 CHAPTER 3. AMADA: WEB DATA REPOSITORIES IN THE CLOUD

Look-up. The look-up strategy consists of finding, for each root-to-leaf path appearing
in the query q, all documents having a data path that matches the query path. Here, a
root-to-leaf query path is obtained simply by traversing the query tree and recording
node keys and edge types. For instance, for the query q1 in Figure 3.2, the paths are:
//epainting/ename and //epainting//epainter/ename.

To find the URIs of all documents matching a given query path

(/|//)a1(/|//)a2 . . . (/|//)aj

we look up in the LUP index all paths associated to key(aj), and then filter them to
only those matching the path.

3.5.3 Strategy LUI (Label-URI-ID)

Index. The idea of this strategy is to concatenate the structural identifiers of a given
node in a document, already sorted by their pre component, and store them into
a single attribute value. We propose this implementation because structural XML
joins which are used to identify the relevant documents need sorted inputs: thus, by
keeping the identifiers ordered, we reduce the use of expensive sort operators after
the look-up.

To each key key(n), strategy LUI associates the pair

(URI(d), id1(n)kid2(n)k . . .kidz(n))

such that id1(n)<id2(n)<. . .<idz(n). For instance, from the documents “delacroix.xml”
and “manet.xml”, some extracted tuples are:

key attribute name attribute values

ename “delacroix.xml” (3,3, 2)(6,8, 3)
“manet.xml” (3,3, 2)(6,8, 3)

aid “delacroix.xml” (2, 1,2)
“manet.xml” (2, 1,2)

aid 1863-1 “manet.xml” (2, 1,2)
wOlympia “manet.xml” (4, 2,3)

Look-up. Index look-up based on LUI starts by searching the index for all the query
labels. For instance, for the query q2 in Figure 3.2, the look-ups will be epainting,
edescription, eyear and w1854.

Then, in order to compute the query results by applying a Holistic Twig
Join [BKS02] over the resulting node identifiers, one only needs to sort them in the
increasing order of their URI (recall that the structural identifiers for any given docu-
ment are already sorted).
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1st key 1st attribute name 1st attribute values

ename “delacroix.xml” /epainting/ename, /epainting/epainter/ename
“manet.xml” /epainting/ename, /epainting/epainter/ename

aid 1863-1 “manet.xml” /epainting/aid 1863-1
wOlympia “manet.xml” /epainting/ename/wOlympia

2nd key 2nd attribute name 2nd attribute values

ename “delacroix.xml” (3,3, 2)(6,8, 3)
“manet.xml” (3,3, 2)(6,8, 3)

aid “delacroix.xml” (2, 1,2)
“manet.xml” (2, 1,2)

aid 1863-1 “manet.xml” (2, 1,2)
wOlympia “manet.xml” (4, 2,3)

Figure 3.4: Sample tuples extracted by the 2LUPI strategy from the documents in
Figure 3.3.

⇡URI

lookup(1st key=qp1) ⇡URI

lookup(1st key=qp2)

. . . ⇡URI

lookup(1st key=qpm)

\

lookup(2nd key=a1)

lookup(2nd key=a2)

. . .

lookup(2nd key=aj)

>√
>√

>√
>√

Holistic Twig Join

Figure 3.5: Outline of look-up using 2LUPI strategy.

3.5.4 Strategy 2LUPI (Label-URI-Path, Label-URI-ID)

Index. This strategy materializes two previously introduced indexes: LUP and LUI.
Sample index tuples resulting from the documents in Figure 3.3 are shown in Fig-
ure 3.4.

Look-up. 2LUPI exploits, first, LUP to obtain the set of documents containing matches
for the query paths, and second, LUI to retrieve the IDs of the relevant nodes.

For instance, given the query q2 in Figure 3.2, we extract the URIs of the docu-
ments matching //epainting//edescription and //epainting/eyear/w1854. The URI sets
are intersected, and we obtain a relation which we denote R1(URI). This is reminis-
cent of the LUP look-up. A second look-up identifies the structural identifiers of the
XML nodes whose labels appear in the query, together with the URIs on their docu-
ments. This reminds us of the LUI look-up. We denote these relations by Ra1

2 , Ra2
2 , . . .

R
aj
2 , assuming the query node labels and values are a1, a2, . . ., aj. Then:

– We compute Sai
2 = Rai

2 ¬<URIR1(URI) for each ai, 1  i  j. In other words,
we use R1(URI) to reduce the R2 relations in the spirit of classical semijoin
reducers [OV11].

– We evaluate a holistic twig join [BKS02] over Sa1
2 , Sa2

2 , . . ., S
aj
2 to obtain URIs of
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the documents with query matches. The tuples for each input of the holistic join
are obtained by sorting the attributes by their name and then breaking down
their values into individual IDs.

Figure 3.5 outlines this process; a1, a2, . . . , aj are the labels extracted from the
query, while qp1, qp2, . . . , qpm are the root-to-leaf paths extracted from the query.

It follows from the above explanation that 2LUPI returns the same URIs as LUI.
The reduction phase serves for prefiltering, to improve performance.

3.5.5 Range and value-joined queries

This type of queries which are supported by our language need special evaluation
strategies.

Queries with range predicates. Range look-ups in key-value stores usually imply
a full scan, which is very expensive. Thus, we adopt a two-step strategy. First, we
perform the index look-up without taking into account the range predicate, in order
to restrict the set of documents to be queried. Second, we evaluate the complete
query over these documents, as usual.

Queries with value joins. Since one tree pattern only matches one XML document,
a query consisting of several tree patterns connected by a value join needs to be
answered by combining tree pattern query results from different documents. Indeed,
this is our evaluation strategy for such queries and any given indexing strategy I :
evaluate first each tree pattern individually, exploiting the index; then, apply the
value joins on the tree pattern results thus obtained.

3.6 Concrete deployment

As outlined before, our architecture can be deployed on top of the main existing
commercial cloud platforms (see Table 3.1). The concrete implementation we have
used for our tests relies on AWS as of October 2012. In this Section, we describe
the AWS components employed in the implementation, and discuss their role in the
whole architecture.

Amazon Simple Storage Service, or S3 in short, is a file storage service for raw
data. S3 stores the data in buckets identified by their name. Each bucket consists of a
set of objects, each having an associated unique name (within the bucket), metadata
(both system-defined and user-defined), an access control policy for AWS users and
a version ID. We opted for storing the whole data set in one bucket because (i) in
our setting we did not use e.g. different access control policies for different users,
and (ii) Amazon states that the number of buckets used for a given dataset does not
affect S3 storage and retrieval performance.

Amazon DynamoDB is a NoSQL database service for storing and querying a collec-
tion of tables. Each table is a collection of items whose size can be at most 64KB. In
turn, each item contains one or more attributes; an attribute has a name, and one
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database table1 1..n item1 1..n attribute1 1..n
name1

1

1

1..n valuekey1 1..2

Figure 3.6: Structure of a DynamoDB database.

or several values. Each table must contain a primary key, which can be either (i) a
single-attribute hash key with a value of at most 2KB or (ii) a composite hash-range
key that combines a 2KB hash key and a 1KB range key. Figure 3.6 shows the struc-
ture of a DynamoDB database. Different items within a table may have different sets
of attributes.

A table can be queried through a get(T,k) operation, retrieving all items in the
table T having a hash key value k. If the table uses a composite hash-range key, we
may use it in a call get(T,k,c) which retrieves all items in table T with hash key k and
range key satisfying the condition c. A batchGet variant permits to execute 100 get
operations through a single API request. To create an item, we use the put(T,(a,v+)+)
operation, which inserts the attribute(s) (a,v+)+ into a newly created item in table T ;
in this case, (a,v+)+ must include the attribute(s) defining the primary key in T . If an
item already exists with the same primary key, the new item completely replaces the
existing one. A batchPut variant inserts 25 items at a time.

Multiple tables cannot be queried by a single query. The combination of query
results on different tables has to be done in the application layer.

In our system, Dynamo DB is used for storing and querying indexes. Previously
presented indexing strategies are mapped to DynamoDB as follows. For every strategy
but 2LUPI the index is stored in a single table, while for 2LUPI two different tables
(one for each sub-index) are used. For any strategy, an entry is mapped into one or
more items. Each item has a composite primary key, formed by a hash key and a
range key. The first one corresponds to the key of the index entry, while the second
one is a UUID [LMS05] global unique identifier that can be created without a central
authority, generated at indexing time. Attribute names and values of the entry are
respectively stored into item attribute names and values.

Using UUIDs as range keys ensures that we can insert items in the index con-
currently, from multiple virtual machines, as items with the same hash key always
contain different range keys and thus cannot be overwritten. Also, using UUID in-
stead of mapping each attribute name to a range key allows the system to reduce the
number of items in the store for an index entry, and thus to improve performances
at query time (we can recover all items for an index entry by means of a simple get
operation).

Amazon Elastic Compute Cloud, or EC2 in short, provides resizable computing ca-
pacity in the cloud. Using EC2, one can launch as many virtual computer instances as
desired with a variety of operating systems and execute applications on them.

AWS provides different types of instances, with different hardware specifications
and prices, among which the users can choose: standard instances are well suited
for most applications, high-memory instances for high throughput applications, high-
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ST$
m,GB = $0.125 IDX$

m,GB = $1.14
ST$

put = $0.000011 IDX$
put = $0.00000032

ST$
get = $0.0000011 IDX$

get = $0.000000032

VM$
h,l = $0.34 QS$ = $0.000001

VM$
h,xl = $0.68 egress$

GB = $0.19

Table 3.4: AWS Singapore costs as of October 2012.

CPU instances for compute-intensive applications. We have experimented with two
types of standard instances, and we show in Section 3.7 the performance and cost
differences between them.

Amazon Simple Queue Service, or SQS in short, provides reliable and scalable
queues that enable asynchronous message-based communication between distributed
components of an application over AWS. We rely on SQS heavily for circulating com-
puting tasks between the various modules of our architecture, that is: from the front
end to the virtual instances running our indexing module for loading and indexing
the data; from the front end again to the instances running the query processor for
answering a query, then from the query processor back to the front end to indicate
that the query has been answered and thus the results can be fetched.

Concrete AWS costs vary depending on the geographic region where AWS hosts the
application. Our experiments took place in the Asia Pacific (Singapore) AWS facility,
and the respective prices as of September-October 2012 are collected in Table 3.4.
Note that virtual machine (instance) costs are provided for two kinds of instances,
“large” (VM$

h,l) and “extra-large” (VM$
h,xl).

3.7 Experimental results

This section describes the experimental environment and results that we obtained.
Section 3.7.1 describes the experimental setup, Section 3.7.2 reports our performance
results, and finally, Section 3.8.1 presents our cost study.

3.7.1 Experimental setup

Our experiments ran on AWS servers from the Asia Pacific region in September-
October 2012. We used the (centralized) Java-based XML query processor developed
within our ViP2P project [KKMZ11], implementing an extension of the algorithm
of [CDZ06] to our larger subset of XQuery. On this dialect, our experiments have
shown that ViP2P’s performance is close to (or better than) Saxon-B v9.1 2.

We use two types of EC2 instances for running the indexing module and query
processor:

– Large (L), with 7.5 GB of RAM memory and 2 virtual cores with 2 EC2 Compute
Units each.

2. http://saxon.sourceforge.net/

http://saxon.sourceforge.net/
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Indexing strategy
Average extraction Average uploading

Total time (hh:mm)
time (hh:mm) time (hh:mm)

LU 0:24 1:33 2:11
LUP 0:32 3:47 4:25
LUI 0:41 2:31 3:22

2LUPI 1:13 6:30 7:46

Table 3.5: Indexing times using 8 large (L) instances.
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Figure 3.7: Indexing in 8 large (L) EC2 instances.

– Extra large (XL), with 15 GB of RAM memory and 4 virtual cores with 2 EC2
Compute Units each.

An EC2 Compute Unit is equivalent to the CPU capacity of a 1.0-1.2 GHz 2007
Xeon processor.

To test index selectivity, we needed an XML corpus with some heterogeneity. We
generated XMark [SWK+02] documents (20000 documents in all, adding up to 40
GB), using the split option provided by the data generator 3. We modified a fraction
of the documents to alter their path structure (while preserving their labels), and
modified another fraction to make them “more” heterogeneous than the original doc-
uments, by rendering more elements optional children of their parents, whereas they
were compulsory in XMark.

3.7.2 Performance study

XML indexing. To test the performance of index creation, the documents were ini-
tially stored in S3, from which they were gathered in batches by multiple L instances
running the indexing module. We batched the documents in order to minimize the
number of calls needed to load the index into DynamoDB. Moreover, we used L in-
stances because in our configuration, DynamoDB was the bottleneck while indexing.
Thus, using more powerful XL instances could not have increased the throughput.

Table 3.5 shows the time spent extracting index entries on 8 L EC2 instances and
uploading the index to DynamoDB using each proposed strategy. We show the average
time spent by each EC2 machine to extract the entries, the average time spent by
DynamoDB to load the index data, and the total observed time (elapsed between the

3. http://www.xml-benchmark.org/faq.txt

http://www.xml-benchmark.org/faq.txt
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Figure 3.8: Index size and storage costs per month with full-text indexing (top) and
without (bottom).

beginning and the end of the overall indexing process). As expected, the more and
the larger the entries a strategy produces, the longer indexing takes. Next, Figure 3.7
shows that indexing time scales well, linearly in the size of the data for each strategy.

A different perspective on the indexing is given in Figure 3.8 which shows the
size of the index entries, compared with the original XML size. In addition to the
full-text indexes size, the figure includes the size for each strategy if keywords are not
stored. As expected, the index for the latter strategies is quite smaller than the full-
text variant. LUP and 2LUPI are the larger indexes, and in particular, if we index the
keywords, the index is quite larger than the data. The LUI index is smaller than the
LUP one, because IDs are more compact than paths; moreover, we exploit the fact that
DynamoDB allows storing arbitrary binary objects, to store compressed (encoded) sets
of IDs in a single DynamoDB value. Finally, the DynamoDB space overhead (which
we described in Section 3.3) is noticeable, especially if keywords are not indexed, but
in both variants grows slower than the index size.

3.8 Query workload details

XML query processing. We now study the query processing performance, using 10
queries from the XMark benchmark that we depict in Figure 3.9. The queries have
an average of ten nodes each; the last three queries feature value joins. Furthermore,
query q1 is very selective (point query); query q4 uses a full-text search predicate.

Table 3.6 shows, for each query and indexing strategy, the number of documents
retrieved by index look-up, the number of documents which actually contain query
results, and the result size for each query. (These are obviously independent of the
platform, and we provide them only to help interpret our next results.) Table 3.6
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Figure 3.9: Query workload used in the experimental section.

Query
# document URIs from index # documents

Results size (KB)
LU LUP LUI 2LUPI with results

q1 3 2 1 1 1 0.04
q2 523 349 349 349 349 94000.00
q3 144 66 33 33 33 52400.00
q4 1089 1089 775 775 775 519.20
q5 1115 740 370 370 370 7500.00
q6 285 283 283 283 283 278.20
q7 285 283 142 142 142 96.20
q8 1400 1025 882 882 507 13800.00
q9 1115 740 740 740 740 338800.00
q10 1400 1025 512 512 116 9.10

Table 3.6: Query processing details (20000 documents).

shows that LUI and 2LUPI are exact for queries q1-q7, which are tree pattern queries
(the look-up in the index returns no false positive in these cases). The imprecision
of LU and LUP varies across the queries, but it may reach 200% (twice as many false
positives, as there are documents with results), even for tree pattern queries like q5.
For the last three queries, featuring value joins, even LUI and LUPI may bring false
positives. For these queries, Table 3.6 sums the numbers of document IDs retrieved
for each tree pattern.
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(b) Detail large (L) EC2 instance on the 40 GB database
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Figure 3.10: Response time (top) and details (middle and bottom) for each query and
indexing strategy.

The response times (perceived by the user) for each query, using each indexing
strategy, and also without any index, is shown in Figure 3.10a; note the logarithmic y
axis. We have evaluated the workload using L and then, separately, XL EC2 instances.
We see that all indexes considerably speed up each query, by one or two orders of
magnitude in most cases. Figure 3.10a also demonstrates that our strategies are able
to take advantage of more powerful EC2 instances, that is, for every query, the XL

running times are shorter than the times using an L instance. The strategy with the
shortest evaluation time is LUP, which strikes a good balance between precision and
efficiency; most of the time, LU is next, followed by LUI and 2LUPI (recall again that
the y axis is log-scale). The difference between the slowest and fastest strategy is a
factor of 4 at most whereas the difference between the fastest index and no index is
of 20 at least.

The charts in Figures 3.10b and 3.10c provide more insight. They split query
processing time into: the time to consult the index (DynamoDB get), the time to run
the physical plan identifying the relevant document URIs out of the data retrieved
from the index, and the time to fetch the documents from S3 into EC2 and evaluate
the queries there. Importantly, since we make use of the multi-core capabilities of EC2
virtual machines, the times individually reported in Figures 3.10b and 3.10c were in fact
measured in parallel. In other words, the overall response time observed and reported
in Figure 3.10a is systematically less than the sum of the detailed times reported in
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Figure 3.11: Impact of using multiple EC2 instances.

Indexing strategy DynamoDB EC2 S3 + SQS Total

LU $21.15 $5.47

$0.02

$26.64
LUP $44.78 $11.95 $56.75
LUI $33.47 $8.95 $42.44

2LUPI $78.25 $21.17 $99.44

Table 3.7: Indexing costs for 40 GB using L instances.

Figures 3.10b and 3.10c.
We see that low-granularity indexing strategies (LU and LUP) have systematically

shorter index look-up and index post-processing times than the fine-granularity ones
(LUI and 2LUPI). The times to transfer the relevant documents to EC2 and evaluate
queries there, is proportional to the number of documents retrieved from the index
look-ups (these numbers are provided in Table 3.6). For a given query, the document
transfer + query evaluation time differs between the strategies by the factor of up to
3, corresponding to the number of documents retrieved.

Impact of parallelism. Figure 3.11 shows how the query response time varies when
running multiple EC2 query processing instances. To this purpose, we sent to the
front-end all our workload queries, successively, 16 times: q1, q2, . . . , q10, q1, q2, . . .
etc. We report the running times on a single EC2 instance (no parallelism) versus
running times on eight EC2 instances in parallel. We can see that more instances
significantly reduce the running time, more so for L instances than for XL ones: this
is because many strong instances sending indexing requests in parallel come close to
saturating DynamoDB’s capacity of absorbing them.

3.8.1 Amazon charged costs

We now study the costs charged by AWS for indexing the data, and for answering
queries. We also consider the amortization of the index, i.e., when query cost savings
brought by the index balance the cost of the index itself.

Indexing cost. Table 3.7 shows the monetary costs for indexing data according to
each strategy. These costs are broken down across the specific AWS services. The
most costly index to build is 2LUPI, while the cheapest is LU. The combined price for
S3 and SQS is constant across strategies, and is negligible compared to EC2 costs. In
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Figure 3.12: Query processing costs decomposition.
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Figure 3.13: Workload evaluation cost details on an extra large (XL) instance.

turn, the EC2 cost is dominated by the DynamoDB cost in all strategies.
Finally, Figure 3.8 shows the storage cost per month of each index, which is pro-

portional to its size in DynamoDB.

Query processing cost. Figure 3.12 shows the cost of answering each query when
using no index, and when using the different indexing strategies. Note that using in-
dexes, the cost is practically independent of the machine type. This is because (i) the
hourly cost for an XL machine is double than that of a L machine; but at the same
time (ii) the four cores of an XL machine allow processing queries simultaneously
on twice as many documents as the two cores of L machines, so that the cost differ-
ences pretty much cancel each other (whereas the time differences are noticeable).
Figure 3.12 also shows that indexing significantly reduces monetary costs compared to
the case where no index is used; the savings vary between 92% and 97%.

To better understand the monetary costs shown in Figure 3.12, we provide the
details of evaluating the query workload on an XL instance in Figure 3.13, again de-
composed across the services we use, to which we add AWSDown, the price charged
by Amazon for transferring query results out of AWS. AWSDown cost is the same for
all strategies, since the same results are obtained. S3 cost is proportional to the selec-
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Figure 3.14: Index cost amortization for a single extra large (XL) EC2 instance.

Indexing strategy
Indexing speed Indexing cost

(ms/MB of XML data) ($/MB of XML data)
[CRCM12] This chapter [CRCM12] This chapter

LU 7491 196 0.019 0.00067
LUP 8335 398 0.057 0.00142
LUI 12447 302 0.021 0.00106

2LUPI 11265 699 0.070 0.00249

Monthly storage cost ($/GB of XML data)
Index, [CRCM12] Index, this chapter Data, [CRCM12] and this chapter

0.275 1.14 0.125

Table 3.8: Indexing comparison.

tivity of the index strategy (recall Table 3.6). DynamoDB costs reflect the amount of
data extracted for each strategy from the index, and finally, EC2 cost is proportional
to the time necessary to answer the workload using each strategy, which means that
the shorter it takes to answer a query, the lower it will be its cost. For every strategy,
the cost of using EC2 clearly dominates, which is expected and desired, since this is
the time actually spent processing the query.

Amortization of the index costs. We now study how indexing pays off when evalu-
ating queries. For an indexing strategy I and workload W , we term benefit of I for W
the difference between the monetary cost to answer W using no index, and the cost
to answer W based on the index built according to I . At each run of W , we “save” this
benefit, whereas we had to pay a certain cost to build I . (The index costs and benefits
also depend on the data set, and increase with its size.) Figure 3.14 shows when the
cumulated benefit (over several runs of the workload on a L instance) overweighs the
index building cost (similarly, on a single L instance, recall Table 3.7). Figure 3.14
shows that any of our strategies allows recovering the index creation costs quite fast,
i.e. just running the workload 4 times for LU, 8 times for LUP and LUI, and 16 times
for 2LUPI respectively. (The cost is recovered when the curves cross the Y = 0 axis.)
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Indexing strategy
Query speed Query costs

(ms/MB of XML data) ($/MB of XML data)
[CRCM12] This work [CRCM12] This work

LU 141 21 4.7⇥ 10�5 0.6⇥ 10�5

LUP 121 18 4.2⇥ 10�5 0.6⇥ 10�5

LUI 186 37 5.6⇥ 10�5 1.3⇥ 10�5

2LUPI 164 37 5.4⇥ 10�5 1.3⇥ 10�5

Table 3.9: Query processing comparison.

3.8.2 Comparison with previous works

The closest related work is [BFG+08], which builds database services on top of a
commercial cloud, and in particular AWS. They focus on implementing transactions
in the cloud with various consistency models; they present experiments on the TPC-
W relational benchmark, using 10.000 products (thus, a database of 315 MB of data,
about 125 times smaller than ours). The setting thus is quite different, but a rough
comparison can still be done.

At that time, Amazon did not provide a key-value store, therefore the authors built
B+ trees indexes within S3. Each transaction in [BFG+08] retrieves one customer
record, searches for six products, and orders three of them. These are all selective
(point) queries (and updates), thus, they only compare with q1 among our queries,
the only one which can be assimilated to a point query (very selective path matched
in few documents, recall Table 3.6). For a transaction, they report running times
between 2.8 and 11.3 seconds, while individual queries/updates are said to last less
than a second. Our q1, running in 0.5 seconds (using one instance) on our 40 GB
database of data, is thus quite competitive. Moreover, [BFG+08] reports transaction
costs between $1.5⇥ 10�4 and $2.9⇥ 10�3, very close to our $1.2⇥ 10�4 cost of q1
using LUP.

The authors of [BFG+08] subsequently also ported their index to SimpleDB [BFG+09].
Still on TPC-W transactions on a 10.000 items database, processing with a SimpleDB
index was moderately faster (by a factor of less than 2) than by using their previous
S3-based one.

Further, we can also establish a comparison with our initial results presented
in [CRCM12]. From a performance perspective, the main difference is that [CRCM12]
stored the index within AWS’ previous key-value store, namely SimpleDB. Table 3.8
compares the work presented in this chapter with [CRCM12] from the perspective of
indexing, and Table 3.9 from that of querying; for a fair comparison, we report mea-
sures per MB (or GB) of data, as [CRCM12] reported experiments on 1 GB of XML
data.

The tables show that the work presented in this chapter speeds up indexing by one
to two orders of magnitude, all the while indexing costs are reduced by two to three
orders of magnitude; querying is faster (and query costs are lower) by a factor of five
(roughly) wrt [CRCM12]. The reason is that DynamoDB allows storing arbitrary
binary objects as values, a feature we exploited in order to efficiently encode our



3.9. RELATED WORK 43

index data. Moreover, DynamoDB has a shorter response time and can handle more
concurrent requests than SimpleDB.

3.8.3 Experiments conclusion

Our experiments demonstrate the feasibility and interest of our architecture based
on a commercial cloud, using a distributed file system to store XML data, a key-value
store to store the index, and the cloud’s processing engines to index and process
queries. All our indexing strategies have been shown to reduce query response time
and monetary cost, by 2 orders of magnitude in our experiments; moreover, our ar-
chitecture is capable of scaling up as more instances are added. The monetary costs of
query processing are shown to be quite competitive, compared with previous similar
works [BFG+08, CRCM12], and we have shown that the overhead of building and
maintaining the index is modest, and quickly offset by the cost savings due to the
ability to narrow the query to only a subset of the documents. In our tests, the LUP
indexing strategy allowed for the most efficient query processing, at the expense of
an index size somehow larger than the data. Further compression of the paths in the
LUP index could probably make it even more competitive.

In our experiments, query execution based on the LU and LUP strategies is always
faster than using the LUI and 2LUPI strategies. We believe that cases for which LUI
and 2LUPI strategies behave better are those in which query tree patterns are multi-
branched, highly selective and evaluated over a document set where most of the
documents only match linear paths of the query. Such cases can be statically detected
by using data summaries and some statistical information as presented for instance
in [ABMP07b].

3.9 Related work

To the best of our knowledge, distributed XML indexing and query processing
directly based on commercial cloud services had not been attempted elsewhere. Our
workshop paper [CRCM12] presented preliminary work on different XML index-based
querying strategies together with a first implementation on top of AWS, and focused
on techniques to overcome Amazon SimpleDB 4 limitations for managing indexes. The
follow-up paper presented in [CRCM13], which this chapter closely follows, featured
several important novelties. First, it presented an implementation which relied on
Amazon’s new key-value store, DynamoDB, in order to ensure better performance in
managing indexes, and, quite importantly, more predictable monetary cost estima-
tion. We provide a performance comparison between both services in Section 3.7.
Second, it presented a proper monetary cost model, which still remains valid in the
contexts of several alternative commercial cloud services. Third, it introduced mul-
tiple optimizations in the indexing strategies. Finally, it reported about extensive

4. http://aws.amazon.com/simpledb/

http://aws.amazon.com/simpledb/
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experiments on a large dataset, with a particular focus on performances in terms of
monetary cost.

Our work is among few to focus on cloud-based indexing for complex data. Among
other previous works, it can be seen as a continuation of [BFG+08, BFG+09], which
also exploited commercial clouds for fine-granularity data management, but (i) for re-
lational data, (ii) with a stronger focus on transactions, and (iii) prior to the efficient
key-value store we used to build indexes in this work. In turn, Stratustore [SZ10] is
an extension for the Jena Semantic Web framework [Jen] that enables its interaction
with Amazon SimpleDB for storing RDF data.

Alternative approaches which may permit to attain the same global goal of man-
aging XML in the cloud comprises commercial database products, such as Oracle
Database, IBM DB2 and Microsoft SQL Server. These products have included XML
storage and query processing capabilities in their relational databases over the last
ten years, and then have ported their servers to cloud-based architectures [BCD+11].
Differently from our framework, such systems have many functionalities beyond those
for XML stores, and require non-negligible efforts for their administration, since they
are characterized by complex architectures.

Another related approach is to aim at leveraging large-scale distributed infrastruc-
tures (e.g., clouds) by intra-query parallelism, as in [FLGP11] or the work that we
present in Chapter 4, enabling parallelism in the processing of each query, by ex-
ploiting multiple machines. Differently, in this chapter, we consider the evaluation of
one query as an atomic (inseparable) unit of processing, and focus on the horizon-
tal scaling of the overall indexing and query processing pipeline distributed over the
cloud.

Finally, some recent works related to cloud services have put special emphasis
on the economic side of the cloud. For instance, the cost of multiple architectures
for transaction processing on top of different commercial cloud providers is studied
in [KKL10]. In this case, the authors focus on read and update workloads rather
than XML processing, as in our study. On the other hand, some works have proposed
models for determining the optimal price [KDF+11] or have studied cost amortiza-
tion [KDGA11] for data-based cloud services. However, in these works, the monetary
costs are studied from the perspective of the cloud providers, rather than from the
user perspective, as in this chapter.

3.10 Summary

In this chapter, we have presented AMADA, an architecture for building scalable
Web data warehouses by means of commercial cloud resources, which can exploit par-
allelism to speed up index building and query processing. We have investigated and
compared through experiments several indexing strategies for XML data and shown
that they achieve query processing speed-up and monetary costs reductions of several
orders of magnitude within AWS.

Acknowledgements. This work has been partially funded by the KIC EIT ICT Labs
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Chapter 4

PAXQuery: Efficient Parallel
Processing of XQuery

This chapter presents a novel approach for parallelizing the execution of complex
queries over XML documents, implemented within our system PAXQuery. We provide
algorithms showing how to translate such queries into plans expressed in the PAr-
allelization ConTracts (PACT) programming model. These plans are then optimized
and executed in parallel by the Stratosphere system 1. We demonstrate the efficiency
and scalability of our approach through experiments on hundreds of GB of XML data.

A short presentation of the PAXQuery system was published in a workshop [CRCM14].
The material of this chapter is being considered for publication in an international
journal. Currently, PAXQuery is being integrated within Stratosphere’s latest release,
and will be open-sourced in the near future as an extension of the Stratosphere plat-
form 2.

4.1 Introduction

By far the most widely adopted implicit parallel framework, MapReduce [DG04]
features a very simple processing model consisting of two operations, Map which dis-
tributes processing over sets of (key, value) pairs, and Reduce which processes the sets
of results computed by Map for each distinct key. While the simplicity of MapReduce
is an advantage, it is also a limitation, since large data processing tasks are repre-
sented by complex programs consisting of many Map and Reduce tasks. In particular,
since these tasks are conceptually basic, one often needs to write programs compris-
ing many successive tasks, which limits parallelism. To overcome this problem, more
powerful abstractions have been proposed to express massively parallel complex data
processing, such as the Resilient Distributed Datasets [ZCD+12] or the PArallelization
ConTracts programming model [BEH+10] (or PACT, in short).

1. Stratosphere has been recently accepted as an Apache incubator project and will be renamed to
Apache Flink (http://incubator.apache.org/projects/flink.html).

2. http://cloak.saclay.inria.fr/research/paxquery/
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In particular, PACT programs are declarative enough to take advantage of intelli-
gent compiling techniques in order to be very efficiently evaluated. At compile time,
the compiler choses an optimal strategy (plan) that maximizes parallelisation oppor-
tunities, and thus efficiency.

In a nutshell, PACT generalizes MapReduce by (i) manipulating records with any
number of fields, instead of (key, value) pairs, (ii) enabling the definition of custom
parallel operators by means of second-order functions, and (iii) allowing one parallel
operator to receive as input the outputs of several other operators. The PACT model
is part of the open-source Stratosphere platform [Str], which works on top of the
Hadoop Distributed File System (HDFS) [Had].

In this work, we present PAXQuery, a massively parallel processor of XML queries.
Given a very large collection of XML documents, evaluating a query that navigates
over these documents and also joins results from different documents raises performance
challenges, which may be addressed by parallelism. Inspired by other high-level data
analytics languages that are compiled to MapReduce programs (e.g., Pig [ORS+08],
Hive [TSJ+10] or Jaql [BEG+11]), PAXQuery translates XML queries into PACT plans.
The main advantage of this approach is implicit parallelism: neither the application
nor the user need to partition the XML input or the query across nodes. This contrasts
with prior work [BCM+13, CLK+12, KCS11]. Further, we can rely on the Stratosphere
platform for the optimization of the PACT plan and its automatic transformation into
a data flow that is evaluated in parallel on top of Hadoop; these steps are explained
in [BEH+10].

The contributions of this chapter are the following:
– We present a novel methodology for massively parallel evaluation of XQuery,

based on PACT and previous research in algebraic XQuery optimization.
– We provide a translation algorithm from the algebraic operators required by a

large powerful fragment of XQuery into operators of the PACT parallel frame-
work. This enables parallel XQuery evaluation without requiring data or query
partitioning effort from the application.
Toward this goal, we first translate XML data instances (trees with node iden-
tity) into PACT nested records, to ensure XML query results are returned after
the PACT manipulations of nested records.
Second, we bridge the gap between the XQuery algebra, and in particular, many
flavors of joins [DPX04, MPV09, MHM06] going beyond simple conjunctive
equality joins, and PACT operators which (like MapReduce) strongly rely on
grouping input records in terms of equality of their keys.
Our translation of complex joins into PACT is of interest beyond the XQuery con-
text, as it may enable compiling other high-level languages [BEG+11, ORS+08,
TSJ+10] into PACT to take advantage of its efficiency.

– We fully implemented our translation technique into our PAXQuery platform.
We present experiments demonstrating that our translation approach (i) effec-
tively parallelizes XQuery evaluation taking advantage of the PACT framework,
and (ii) scales well beyond alternative approaches for implicitly parallel XQuery
evaluation, in particular as soon as joins across documents are present in the
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workload.
The remainder of the chapter is organized as follows. Section 4.2 introduces the

approach, while Section 4.3 provides background on XQuery and the PACT model.
Section 4.4 overviews our complete solution and characterizes the XQuery algebras
targeted by our translation. Section 4.5 presents the translation algorithm from alge-
bra plans to PACT, at the core of this work. Section 4.6 describes our experimental
evaluation. Section 4.7 discusses related work, before concluding this chapter.

4.2 Motivation

We illustrate the need for the parallel processing techniques developed in this
chapter by means of the following example.

Example 1. Consider the following XQuery over XMark [SWK+02] documents. The
query extracts the name of users, and the items of their auctions (if any):
let $pc := collection( ‘ p e o p l e ’ ),

$cc := collection( ‘ c l o s e d_au c t i o n s ’ )
for $p in $pc/site/people/person , $i in $p/@id
let $n := $p/name
let $r :=

for $c in $cc// closed_auction , $b in $c/buyer/@person ,
$s in $c/seller/@person

let $a := $c/itemref
where $i = $b or $i = $s
return $a

return <res >{$n,$r}</res > ⇧

Suppose we need to evaluate this query over two large collections of documents
(concerning people, respectively closed auctions) stored in HDFS. Evaluating the
query in a massively parallel fashion as previously proposed, e.g., in [KCS11] needs
the programmer to explicitly insert parallelization primitives in the query, which in
turn requires time and advanced expertise.

Alternatively, one could partition the XML data and run the query as it is, over
the partitioned input. Obviously, this requires the partitioning to be such that the
query runs with no modification on the partitions. Partitioning strategies meeting
this goal have been studied e.g., in [BCM+13, CLK+12]. Further, for complex XQuery
queries like the one in Example 1, this method also necessitates input from the ap-
plication designer. In particular, it requires manual decomposition of the query into
(i) “embarrassingly parallel” subqueries which can be directly run in parallel over
many documents, and (ii) a “recomposition” query that applies the remaining query
operations.

In contrast, for the above query, PAXQuery generates in a fully automated fashion
the PACT program shown in Figure 4.1. We outline here its functioning while on
purpose omitting details, which will be introduced later on.

– The xmlscan(‘people’) and xmlscan(‘closed_auctions’) operators scan (in parallel)
the respective collections and transform each document into a record.

– Next, the map operators navigate in parallel within the records thus obtained,
following the query’s XPath expressions, and bind the query variables.
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xmlwrite

reduce(post)

cogroup($i=$b) cogroup($i=$s)

map(navigation1) map(navigation2)

xmlscan(‘people’) xmlscan(‘closed_auctions’)

Figure 4.1: Outline of the PACT program generated by PAXQuery for the XQuery in
Example 1.

– The next operators in the PACT plan (cogroup) go beyond MapReduce. In a
nutshell, a cogroup can be seen as a reduce operator on multiple inputs: it
groups together records from all inputs sharing the same key value, and then it
applies a user-defined function on each group. In this example, the functions
are actually quite complex (we explain them in Section 4.5). The difficulty they
have to solve is to correctly express (i) the disjunction in the where clause of the
query, and (ii) the outerjoin semantics frequent in XQuery: in this example, a
<res> element must be output even for people with no auctions.

– The output of both cogroup operators is received by the reduce, which builds
the final join results between people and closed_auctions.

– The last xmlstore builds and returns XML results.
This approach enables us to take advantage of the Stratosphere platform [Str] in

order to automatically parallelize complex XML processing, expressed in a rich dialect
of XQuery. In contrast, state-of-the-art solutions require partitioning, among nodes and
by hand, the query and/or the data. Moreover, using PACT gives PAXQuery a perfor-
mance advantage over MapReduce-based systems, because PACT’s more expressive
massively parallel operators allow more efficient query implementations.

4.3 Background

To support the presentation of our approach, we now provide background on the
XQuery dialect we target (Section 4.3.1), and the PACT programming model used by
Stratosphere (Section 4.3.2).

4.3.1 XQuery fragment

We consider a representative subset of the XQuery 3.0 language [W3C14b]. Our
goal was to cover (i) the main navigating features of XQuery, and (ii) key constructs
to express analytical style queries e.g., aggregation, explicit grouping, or rich compar-
ison predicates. However, extensions to support other XQuery constructs e.g., if or
switch expressions, can be integrated into our proposal in a straightforward manner.
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Query ::=FLWRExpr

FLWRExpr ::= Initial Middle* Return

Initial ::=For | Let

Middle ::= Initial | Where | GroupBy

For ::= for ForBinding (, ForBinding)*
ForBinding ::=Var in PathExpr

PathExpr ::=(distinct-values)? (collection(Uri) | doc(Uri) | Var) Path

Let ::= let LetBinding (, LetBinding)*
LetBinding ::=Var := (FLWRExpr | AggrExpr | PathExpr)
AggrExpr ::=(count | avg | max | min | sum) Var

Where ::=where OrExpr

OrExpr ::=AndExpr (or AndExpr)*
AndExpr ::=BoolExpr (and BoolExpr)*
BoolExpr ::=(not)? (Pred | Contains | Empty)
Pred ::=Var (ValCmp | NodeCmp) (Var | C )
Contains ::=contains (Var, C )
Empty ::=empty (Var)
GroupBy ::=group by Var (, Var)*
Return ::= return (EleConst | (AggrExpr | Var)+)
EleConst ::=<EName Att* (/> | (> (EleConst | AggrExpr | Var)* </ EName >))
Att ::=AName = "(AggrExpr | Var | AVal)*"
Var ::=$VarName

Figure 4.2: Grammar for the considered XQuery dialect.

Figure 4.2 depicts the grammar for our dialect. A query is a FLWR expression,
which is a powerful abstraction that can be used for many purposes, including iterat-
ing over sequences, joining multiple documents, and performing grouping.

The initial clause of the expression is a for or let. The for clause iterates over the
items in the sequence resulting from its associated expression, binding the variable
to each item. In turn, a let clause binds the variable to the result of its associated
expression, without iteration.

The bindings for for clauses are generated from an expression PathExp. A path
is evaluated starting from the root of each document in a collection available at URI
Uri , from the root of a single document available at URI Uri , or from the bindings of
a previously introduced variable. Path corresponds to the navigational path used to
locate nodes within trees; this dialect has been first identified in [MS02] under the
name XPath{/,//,[]}. In turn, let clauses may be used to bind variables to: an expression
PathExp, a FLWR expression in turn, or an aggregation expression AggrExpr .

The clauses in the middle of the above grammar (for , let, where, or group by)
may appear multiple times and in any order. The where clause supports boolean
expressions (using and and or) in disjunctive normal form (DNF). We support two
different types of elementary comparators: (ValCmp) compares atomic values, while
(NodeCmp) compares nodes by their identity or by their document order. The group
by clause groups tuples based on the value of the variables specified in the clause.

Finally, the FLWR expression ends with a return clause. For each tuple of bindings,
the clause builds an XML forest using an element construction expression EleConst or
a list of variables Var+. When we use the element construction expression, the value
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Q1

let $ic := collection( ‘ i t em s ’ )
let $i := $ic/site/regions //item
return count($i)

Q2

let $ic := collection( ‘ i t em s ’ )
for $i in $ic/site/regions //item
let $l := $i/location/text()
group by $l
return <res ><name >{$l}</name ><num >{count($i)}</num ></res >

Q3

let $pc := collection( ‘ p e o p l e ’ ),
$cc := collection( ‘ c l o s e d_au c t i o n s ’ )

for $p in $pc/site/people/person , $i in $p/@id
let $n := $p/name/text()
let $a :=

for $t in $cc/site/closed_auctions/closed_auction ,
$b in $t/buyer/@person

where $b = $i
return $t

return <item person ="{$n}">{ count($a)}</item >

Figure 4.3: Sample queries expressed in our XQuery grammar.

in AVal follows the XML naming convention for attribute values, while AName and
EName follow the restrictions associated to the XML node naming conventions.

Figure 4.3 shows three sample queries from our supported dialect. Queries Q1 and
Q2 use only one collection of documents while query Q3 joins two collections. Further,
Q2 and Q3 construct new XML elements while Q1 returns the result of an aggregation
over nodes from the input documents.

4.3.2 PACT framework

The PACT model [BEH+10] is a generalization of MapReduce. PACT plans are
DAGs of implicitly parallel operators, that are optimized and translated into explicit
parallel data flows by Stratosphere.

We introduce below the PACT data model and formalize the semantics of its oper-
ators.

Data model. PACT plans manipulate records of the form:

r = (( f1, f2, . . . , fn), (i1, i2, . . . , ik))

where 1 k  n and:
– ( f1, f2, . . . , fn) is an ordered sequence of fields fi. In turn, a field fi is either an

atomic value (string) or a ordered sequence (r 01, . . . , r 0m) of records.
– (i1, i2, . . . , ik) is an ordered, possibly empty, sequence of record positions in
[1 . . . n] indicating the key fields for the record. Each of the key fields must
be an atomic value.

The key of a record r is the concatenation of all the key fields fi1 , fi2 , . . . , fik . We
denote by r[i] and r.key the field i and the key of record r, respectively. A ?-record
is a record whose fields consist of null (?) values.

We use R to denote the infinite domain of records.
Path indexes are needed to describe navigation through records and select record
fields. A path index pi obeys the grammar pi := j.pi | ✏, with j � 0. Navigation



4.3. BACKGROUND 53

Operator

  User function (UF)
Parallelization

contract

Annotations
Compiler hints DataData

Figure 4.4: PACT operator outline.

through r along a path index j.pi first selects r[ j]. If pi is empty (✏), then a target
field is selected. Otherwise, if r[ j] is a list of records (the field at position j is nested),
pi navigation is performed on each record.

Data sources and sinks are, respectively, the starting and terminal nodes of a PACT
plan. The input data is stored in files; the function parameterizing data source opera-
tors specifies how to structure the data into records. In turn, data is output into files,
with the destination and format similarly controlled by an output function.

Semantics. Operators are data processing nodes in a PACT plan. Each operator
manipulates bags of records; we write {{r1, r2, . . . , rn}} to indicate a bag of n records.
From now on, for simplicity, we will call a PACT operator simply a PACT, whenever
this does not cause confusion.

As Figure 4.4 shows, a PACT consists of (i) a parallelization contract, (ii) a user
function (UF in short) and (iii) optional annotations and compiler hints characterizing
the UF behaviour. We describe these next.

1. Parallelization contract. A PACT can have k � 1 inputs, each of which is a
finite bag of records. The contract determines how input records are organized
into groups. Thus, it is a function of the form:

c : (2R)k! 22R for some k � 1

where we use the usual notation 2R to denote the power set of the set R .

2. User function. The UF is executed independently over each bag of records
created by the parallelization contract, therefore these executions can take place
in parallel. Formally, the UF is a function of the form:

f :R⇤ !R⇤

3. Annotations and/or compiler hints may be used to enable optimizations (with
no impact on the semantics), thus we do not discuss them further.

The semantics of the PACT op given as input k bags of records I1, . . . , Ik, with
Ii ⇢ R , 1  i  k, and having the parallelization contract c and the user function f
is:

op(I1, . . . , Ik) =
S

s2c(I1,...,Ik)
f (s)

In the above, c builds bags of records by grouping the input records belonging to
bags I1, . . . , Ik; f is invoked on each bag produced by c, and the resulting bags are
unioned.

4. Figure reproduced from [HPS+12] with permission.
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Figure 4.5: (a) map, (b) reduce, (c) cross, (d) match, and (e) cogroup paralleliza-
tion contracts. 4

Predefined contracts. Although the PACT model allows creating custom paralleliza-
tion contracts, a set of built-in PACT operators is provided for the most common cases
(see Figure 4.5). As we will show, the possibility to create expressive operators by
pairing an existing input contract with a (potentially complex) user function leads to
great flexibility in expressing the complex operations involved by our XQuery dialect.
In the following, we detail the semantics of the contracts.

– Map has a single input, and builds a singleton for each input record. Formally,
given the bag I1 ⇢R of records:

cmap(I1) = {{{r} | r 2 I1}}
– Reduce also has a single input and groups together all records that share the

same key. Given a bag of input records I1:
creduce(I1) = {s = {{r1, . . . , rm}} | r1, . . . , rm 2 I1 ^ r1.key = . . .= rm.key ^

6 9r 0 2 I1 \ s : r 0.key = r1.key)}
– Cross builds the cartesian product of two inputs. Formally, given I1, I2 ⇢R:

ccross(I1, I2) = {{(r1, r2) | r1 2 I1, r2 2 I2}}
– Match builds all pairs of records from its two inputs, which share the same key.

Thus, given I1, I2 ⇢R:

cmatch(I1, I2) = {{(r1, r2) | r1 2 I1, r2 2 I2 ^ r1.key = r2.key}}
– CoGroup can be seen as a “Reduce on two inputs”; it groups the records from

the both inputs, sharing the same key value. Formally, given I1, I2 ⇢R:

ccogroup(I1, I2) = {s = {{r11, . . . , r1m, r21, . . . , r2 j}} | r11, . . . , r1m 2 I1 ^
r21, . . . , r2 j 2 I2 ^
8r, r 0 2 s : r.key = r 0.key ^
6 9r 00 2 (I1 [ I2) \ s : r 00.key = r11.key}

4.4 Outline

Our approach for implicit parallel XQuery evaluation is to translate XQuery into
PACT plans, as depicted in Figure 4.6. The central vertical stack traces the query
translation steps from the top to the bottom, while at the right of each step we show
the data models manipulated by that step.

First, the XQuery query is represented as an algebraic expression, on which multi-
ple optimizations can be applied. XQuery translation into different algebra formalisms
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Figure 4.6: Translation process overview.

and the subsequent optimization of resulting expressions have been extensively stud-
ied [BGvK+06, RSF06, ZPR02]. In Section 4.4.1, we characterize the class of XML
algebras over which our translation technique can be applied, while we present the
nested-tuple data model and algebra used by our work in Section 4.4.2.

Second, the XQuery logical expression is translated into a PACT plan; we explain
this step in detail in Section 4.5.

Finally, the Stratosphere platform receives the PACT plan, optimizes it, and turns
it into a data flow that is evaluated in parallel; these steps are explained in [BEH+10]
and thus they will not be detailed further in the thesis.

4.4.1 Assumptions on the XQuery algebra

Numerous logical algebras have been proposed for XQuery; see, for instance,
[PWLJ04, DPX04, MPV09, RSF06]. While the language has a functional flavor, most
algebras decompose the processing of a query into operators, such as: navigation (or
tree pattern matching), which given a path (or tree pattern) query, extracts from a
document tuples of nodes matching it; selection; projection; join etc.

A significant source of XQuery complexity comes from nesting: an XQuery expres-
sion can be nested in almost any position within another. Nested queries challenge
the optimizer, as straightforward translation into nested plans leads to very poor per-
formance.

For instance, in Figure 4.2, Q3 contains a nested subquery for $t ... return
$t (shown indented in the figure); let us call it Q4 and write Q3 = e(Q4). A naïve
algebraic expression of such a query would evaluate Q4 once per result of e in order
to compute Q3 results, which is typically inefficient.

Efficient optimization techniques translate nested XQuery into unnested plans re-
lying on joining and grouping [DPX04, MPV09, MHM06]. Thus, a smarter method to
represent such query is to connect the sub-plans of Q4 and e with a join in the plan of
Q3; the join condition in this example is $b=$i. Depending on the query shape, such
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decorrelating joins may be nested and/or outer.
Our goal is to complement existing engines, which translate from XQuery to an

internal algebra, by an efficient compilation of this algebra into an implicit paral-
lel framework such as PACT. This enables plugging a highly parallel back-end to an
XQuery engine to improve its scalability. Accordingly, we aim to adapt to any XML
query algebra satisfying the following two assumptions:

– The algebra is tuple-oriented (potentially using nested tuples).
– The algebra is rich enough to support decorrelated (unnested) plans even for

nested XQuery; in particular we consider that the query plan has been unnested
before we start translating it into PACT.

Three observations are of order here.
First, to express complex queries without nesting, the algebra may include any

type of joins (conjunctive/disjunctive, value or identity-based, possibly nested, possibly
outer), as well as grouping; accordingly, we must be able to translate all such operators
into PACT.

Second, a tuple-based algebra for XQuery provides border operators for (i) creat-
ing tuples from XML trees, in leaf operators of the algebraic plan; (ii) constructing
XML trees out of tuples, at the top of the algebraic plan, so that XML results can be
returned.

Finally, we require no optimization but unnesting as described in [MFK01,
MHM06] to be applied on the XML algebraic plan before translating it to PACT; how-
ever, any optimization may be applied before (and orthogonal to) our translation.

4.4.2 Algebraic representation of XQuery

The present work is based on a translation from the algebra described in [MPV09].
A methodology for translating our XQuery dialect into the algebra we consider was
described in [ABM+06], and detailed through examples in [MP05]. We describe the
nested tuple data model manipulated by this algebra, then present its operators.

4.4.2.1 Nested tuples data model for XML

The data model extends the W3C’s XPath/XQuery data model with nested tuples
to facilitate describing algebraic operations.
Formally, a tuple t is a list of variable-value pairs:

(($V 1, v1), ($V 2, v2), . . . , ($V k, vk))

where the variable names $V i are all distinct, and each value vi is either (i) an item,
which can be an XML node, atomic value or ?, or (ii) an homogeneous collection of
tuples (see below).

Three flavours of collections are considered, namely: lists, bags and sets, denoted
as (t1, t2, . . . , tn), {{t1, t2, . . . , tn}}, and {t1, t2, . . . , tn}, respectively.

The concatenation of two tuples t1 and t2 is denoted by t1+t2.
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A ::= constructL Operator

Operator ::=Scan | UnaryOp | BinaryOp

Scan ::= scan
UnaryOperator ::=(Navigation | Group-By | Flatten | Selection | Projection | Aggregation |

DuplicateElimination) Operator

Navigation ::=nave
Selection ::= sel⇢
Projection ::=projV
Group-By ::= grpGid,Gv ,$r
Flatten ::=flatp
Aggregation ::=aggp,a,$r
DuplicateElimination ::=dupelimV
BinaryOperator ::=(CartProd | Join | LeftOuterJoin | NestedLeftOuterJoin)

Operator, Operator

CartProd ::=prod
Join ::= join⇢
LeftOuterJoin ::=ojoinl

⇢

NestedLeftOuterJoin ::=nojoinl
⇢

Figure 4.7: XML algebraic plan grammar.

Tuple schemas. The schema S of a tuple t is a set of pairs {($V 1, S1), . . . , ($V n, Sn)}
where each Si is in turn the schema of the value of the variable $V i. We use val to
denote the type of (any) atomic value, and node to denote the type of XML nodes.
Further, a collection of values has the schema C{S} where C is list, bag, or set,
depending on the kind of collection, and S is the schema of all values in the collection
i.e., only homogeneous collections are considered.

Variable paths. Given a tuple schema S = {($V 1, S1), . . . , ($V n, Sn)}, a variable path
p, we say p is valid wrt S if and only if: (i) p is ✏, or (ii) p = $V i.p0 and ($V i, Si) 2 S
and if p0 6= ✏ then Si = C(S0) and p0 is valid wrt S0. If a path p is valid with respect
to S, then one can follow p within any tuple t conforming to S in order to extract a
value (a forest), which we denote hereafter as t.p.

4.4.2.2 XML algebra operators

This section provides details about algebraic operators used by the algebra con-
sidered in this work. In the following, we denote by F the domain of XML forests,
and we denote by T the domain of tuples.

XML Construction (constructL). The input to the operator is a collection of tuples,
and from each tuple an XML forest is created: constructL : T ⇤ !F⇤.

The information on how to build the XML forest is specified by a list L of construc-
tion tree patterns (CTPs in short), attached to the construct operator. For each tuple in
its input, constructL builds one XML tree for each CTP in L [MPV09].

Formally, Construction Tree Patterns are defined as follows.

Definition 1 (Construction Tree Pattern). A Construction Tree Pattern is a tree c =
(V, E) such that each node n 2 V is labeled with (i) a valid XML element or attribute
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Algorithm 1: XML Construction
Input : Collection of tuples T , list of CTPs L
Output: XML forest

1 f  ()
2 for t 2 T do
3 for c 2 L do
4 r  c.root
5 if r is not a leaf and r is labeled with a variable path p then
6 T 0  collection of tuples obtained by following p within t

7 else
8 T 0  T

9 L0  children(r)
10 f 0  constructL0(T 0)
11 if r is not optional or any variable path pr labeling a leaf under r leads to a

non-? value within t then
12 fr  ()
13 if r is labeled with an element (resp. attribute) name l then
14 fr  new element/attribute labeled l

15 else
16 if r is a leaf then
17 fr  t|p

18 if fr is not () then
19 add f 0 as child of fr

20 else
21 fr  f 0

22 append fr to f

23 output f ; exit

name, or (ii) a variable path p (recall Section 4.4.2.1), which is $V 1.p0 where p0 is in
turn a variable path.

If a node n is labeled with a variable path p, and a descendant ndesc of n is annotated
with a variable path pdesc, then p is a prefix of pdesc.

Finally, a construction subtree in c may be optional. ⇧

Without loss of generality, we will assume from now on that in all CTPs, the paths
are valid wrt the schema of tuples in the input to the construct operator.

The semantics of constructL for an input collection of tuples T and a list of CTPs
L is depicted in Algorithm 1. We use an XML forest f , initially empty, to gather the
resulting XML.

XML content is built out of each tuple t 2 T during a top-down, left-to right
traversal of each CTP c 2 L; construct is called recursively following this order (lines 4-
10). Observe that if an intermediary node in c is labeled with a variable path p, p
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(b) Resulting XML forests after applying the CTPs to a collection of tuples.

Figure 4.8: Sample CTPs and corresponding XML construction results.

is followed to extract a nested collection of tuples within t (line 6), which is in turn
used as input for the subsequent construct call (line 10). Thus, we can navigate over
the nested collection of tuples to build the construction results.

Subsequently, XML content for the current node r and its children (if any) is cre-
ated and appended to f iff (i) r is not the root of an optional subtree, or (ii) r is the
root of an optional subtree but following any variable path pr labeling a leaf under r
leads to a non-? value within t (lines 11-22).

In Figure 4.8a, we show four CTPs c1, . . . , c4, while Figure 4.8b shows three nested
tuples and the four different XML forests produced out of these three tuples by the
operator constructci ,1i4. We depict an optional construction subtree in a CTP with a
dashed edge. Regardless of the construction pattern used, there are three trees in the
forest, each built from one input tuple. The root of each tree is a newly created node
labeled person, as dictated by each of the four cis. Further, in each tree of the forest
built for c1, the children of the person node are deep copies 5 of the forests found in
the $N attribute, respectively, in the nested $R.$Z and $R.$C attributes. Since in the
third tuple the latter forests are empty, the third tree in the forest of c1 only has a copy
of n3 as child. The same happens for c2, as the subtree rooted at address is optional
and thus it is only built if $R.$Z or $R.$C are not bound to ?.

When XML trees are constructed based on the CTP c4, the root node in each tree

5. Following standard XQuery semantics [W3C14b], whenever an input node needs to be output
under a new parent, a deep copy of the input node is created and used in the output.
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has as children (copies of) the $N nodes, as well as a newly created address node
having the $Z and $C forests as children.

Scan (scan). The scan operator takes as input an XML forest and creates a tuple out
of each tree in the forest: scan : F ! T ⇤. The semantics of the scan operator whose
input is an XML forest f is the following:

scan( f ) = {{h($I , d.root)i | d 2 f }}

Navigation (nave). XPath and XQuery may perform navigation, which, in a nutshell,
binds variables to the result of path traversals. Navigation is commonly represented
through tree patterns, whose nodes carry the labels appearing in the paths, and where
some target nodes are also annotated with names of variables to be bound, e.g., $pc,
$i etc.

The algebra we consider allows to consolidate as many navigation operations from
the same query as possible within a single navigation tree pattern, and in particular nav-
igation performed outside of the for clauses [ABM+06, DPX04, MMS07]. Large navi-
gation patterns lead to more efficient query execution, since patterns can be matched
very efficiently against XML documents; for instance, if the pattern only uses child
and descendant edges, it can be matched in a single pass over the input, for instance
using a slight extension of the algorithm described in [CDZ06].

In the spirit of generalized tree patterns [CJLP03], annotated tree patterns [PWLJ04],
or XML access modules [ABM05], we assume a navigation (nav) operator parameter-
ized by an extended tree pattern (ETP) supporting multiple returning nodes, child and
descendant axis, and nested and optional edges. In the following we introduce ETPs
formally.

Definition 2 (Extended Tree Pattern). An Extended Tree Pattern is a tree e = (V, E)
where:

– The root r 2 V is labeled with a variable $I .
– Each non-root node n 2 V are labeled with (i) an element/attribute name and (ii)

optionally, a variable $V .
– Each e = (x , y) 2 E is either a child edge from x to y, denoted by a single line, or

a descendant edge from x to y, denoted by a double line. Further, optional edges
are depicted with dashed lines, and nested edges are labeled with n. ⇧

Figure 4.9a depicts some sample extended tree patterns.
Given an ETP e and an XML tree d, an embedding generates the tuple that results

from binding the root variable of e to d and mapping the nodes of e to a collection of
nodes in d. The variables of the binding tuples are ordered by the preorder traversal
sequence of e. Note that if e contains optional edges, a mapping may be partial: nodes
connected to the pattern by these edges may not be mapped, in which case the node
takes the ? value.

We denote by '(e, d) all the embeddings from e to d. Then, we define the seman-
tics of the navigation operator as:
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(b) Resulting tuples after applying ETPs to a given tuple.

Figure 4.9: Sample ETPs and corresponding navigation results.
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Figure 4.10: Sample XML tree.

nave(A ) =
S

t2A
{{t + t 0 | t 0 2 '(e, t.$I)}}

In other words, the navigation operator nav is parameterized by a tree pattern
e, whose root is labeled with a variable $I , that must appear in tuples returned by
the input expressionA . The nav operator concatenates t successively with all tuples
binding returned by '(e, t.$I), for any tuple t returned byA .

The semantics of the operator are illustrated with four examples in Figure 4.9b.
Given a tuple with a variable $I bound to the XML tree shown in Figure 4.10, the
navigation operator using e1 extracts the name and city nodes of each person; observe
that the variable $C is nested in $R and that the person without any city node does not
generate any bindings. Instead, the navigation operator using e4 generates bindings
from all person nodes, as the subtree rooted at the address node is optional. The
navigation result for ETPs e2, e3 is extracted in the similar fashion.

Group-By (grpGid,Gv ,$r). The operator has three parameters: the set of group-by-id
variables Gid, the set of group-by-value variables Gv and the result variable $r.
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Definition 3 (Partition function). Let P(A , Gid, Gv) be the set of tuple collections that
results from partitioning the tuples output byA , such that the tuples in a collection have
id-equal values for the variables of Gid and equal values for the variables of Gv.

For each collection p 2 P(A , Gid, Gv), let t p
id (respectively, t p

v ) be the tuple consist-
ing of the Gid (respectively, Gv) variables together with their values in p. Then, the
semantics of group-by operator is defined as:

grpGid,Gv ,$r(A ) = {{t p
id+t p

v+h($r, p)i | p 2 P(A , Gid, Gv)}}

Each tuple in the output of grp contains:
– The variables of Gid and Gv with their values.
– A newly introduced variable $r, whose value is the group of input tuples whose

Gid attributes are ID-equal, and whose Gv values are equal.

Flatten (flatp). This operator unnests tuples in the collection referenced by p.
In the following, we specify the semantics of this operator when p.length = 1;

the other cases can be easily worked out using the same approach. For each input
tuple t 2 A , let t 0 (respectively, t 00) be the tuple containing the variables preceding
(respectively, succeeding) p in t. Further, let ti be each of tuples contained in the
collection t|p. Then, we formalize the semantics of the operator as follows:

flatp(A ) = {{t 0+ t p
i + t 00 | t 0+ h(p, t|p)i+ t 00 2 A ^ t p

i 2 t|p}}

Selection (sel⇢). The selection operator is defined in the usual way based on a
boolean predicate ⇢ to be tested on a tuple t. Formally, a selection over a stream
of tuples generated byA is defined as:

sel⇢(A ) = {{t | t 2A ^ ⇢(t)}}

Projection (projV ). The operator is defined by specifying a set of variable names
V = {$V 1, . . . , $V k} that are present at the top level of the input schema and should
be retained in the output tuples. More precisely:

projV (A ) = {{h($V 1, v1), . . . , ($V k, vk)i | t 2A ^ 8 j 2 {1..k}.$V j 2 V ^
($V j, vj) 2 t}}

Aggregation (aggp,a,$r). The operator has three parameters: the variable path p that
references the variable over whose bound values we will execute the aggregation,
the aggregation operation a (recall that we support count, avg, max, min and sum
aggregation functions), and the result variable $r.

Let A(t, p, a) be the result of applying the aggregation operation a on the values
bound to variable path p in tuple t.

If the path p refers to a variable in a immediate nested collection, i.e. p.length= 2,
the semantics of the aggregation operator are defined as follows.

aggp,a,$r(A ) = {{t + t 0 | t 2A ^ t 0 = h($r, A(t, p, a))i}}
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The semantics of the aggregation with more levels of nesting, i.e. p.length > 2, is
straightforward.

Finally, if we want to aggregate over a non-nested variable of the input tuples, i.e.
p.length= 1, we proceed by nesting them under a new variable to produce the correct
aggregation result. Thus, the semantics is defined as follows.

aggp,a,$r(A ) = {{aggp,a,$r({t}) | t = h($N , (A ))i}}

Duplicate elimination (dupelimV ). The operator is defined by specifying a set of
variable names V that are present at the top level of the input schema and whose
bound value should be unique among the output tuples.

Recall the partition function P(A , Gid, Gv) introduced for the group-by operator.
Using that function, we define the semantics of the duplicate elimination operator as:

dupelimV (A ) = {t1 | {{t1, . . . , tn}} 2 P(A , (), V )}

Cartesian product (prod). The cartesian product has the standard semantics:

prod(A 1,A 2) = {{t1+t2 | t1 2A 1, t2 2A 2}}

Join (join⇢). The join relies on a boolean join predicate ⇢(t1, t2), and is defined as
follows.

join⇢(A 1,A 2) = {{t1+t2 | t1 2A 1, t2 2A 2 ^ ⇢(t1, t2)}}
As stated previously, the join predicate is expressed in disjunctive normal form

(DNF).

Left outer join (ojoinl
⇢). Given two streams of tuples produced by A 1,A 2 and a

DNF predicate ⇢, ojoinl
⇢(A 1,A 2) returns the pairs of tuples satisfying ⇢, plus the

tuples from the left input without a matching right tuple. Its semantics are defined as
follows:

ojoinl
⇢(A 1,A 2) = {{t1+t2 | t1 2A 1, t2 2A 2 ^ ⇢(t1, t2)}} [

{{t1+ ?A 2
| t1 2A 1, 6 9t2 2A 2 : ⇢(t1, t2)}}

where ?A 2
is a tuple having the schema of the tuples in A 2 and ? values bound to

its variables. As customary of left outer joins, the left tuples without a matching right
tuple are concatenated to ?A 2

.

Nested left outer join (nojoinl
⇢). The operator semantics are defined as:

nojoinl
⇢(A 1,A 2) = {{t1+ h($r, (t21, . . . , t2n))i | t1 2A 1 ^ t21, . . . , t2n 2A 2 ^

8k 2 {1..n}.⇢(t1, t2k)}} [
{{t1+ h($r,?A 2

)i | t1 2A 1, 6 9t2 2A 2 : ⇢(t1, t2)}}

Thus, each tuple from the left input is paired with a new nested variable $r,
encapsulating all the matching tuples from the right-hand input. If the left tuple does
not have a matching right tuple, $r must contain a tuple ?A 2

.
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e1 $pc:*

site

people

$p: person

$i: @id $n: name
n: $t

e2 $cc:*

$c: closed_auction

buyer

$b: @person

seller

$s: @person

$a: itemref
n: $u

constructL

nojoinl
$i=$b_$i=$s

nave1
nave2

scan(‘people’) scan(‘closed_auctions’)

S1:=($pc)

S2:=($pc, $p, $i, $t{$n})

S3:=($cc)

S4:=($cc, $c, $b, $s, $u{$a})

S5:=($pc, $p, $i, $t{$n}, $r{$cc, $c, $b, $s, $u{$a}})

Figure 4.11: Sample logical plan for the query in Example 1.

Example 1 (continuation). The algebraic plan corresponding to the XQuery intro-
duced in Section 4.2 is shown in Figure 4.11. For simplicity, we omit the variable
types in the operators schema and only show the variable names. We discuss the
operators starting from the leaves.

The XML scan operators take as input the ‘people’ (respectively ‘closed_auctions’)
XML forests and create a tuple out of each tree in them. XML scan is one of the border
operators.

Consider the ETP e1 in Figure 4.11. The node labeled $n:name is (i) optional and
(ii) nested with respect to its parent node $p:person, since by XQuery semantics: (i) if
a given $p lacks a name, it will still contribute to the query result; (ii) if a given $p has
several names, let binds them all into a single node collection. The operator nave1

concatenates each input tuple successively with all @id attributes (variable $i) and
name elements (variable $n) resulting from the embeddings of e1 in the value bound
to $pc. Observe that variable $n is nested into variable $t, which did not appear in
the original query; in fact, $t is created by the XQuery to algebra translation to hold
the nested collection with values bound to $n. The operator nave2

is generated in a
similar fashion. Therefore, in the previous query, ETPs e1 and e2 correspond to the
following fragment:
for $p in $pc/site/people/person , $i in $p/@id
let $n := $p/name
let $r :=

for $c in $cc// closed_auction , $b in $c/buyer/@person ,
$s in $c/seller/@person

let $a := $c/itemref

Above the nav operators, we find a nested join (nojoinl
⇢) on a disjunctive predicate

⇢, which selects those people that appear as buyers or sellers in an auction.
Finally, the XML construction (constructL) is the border operator responsible for

transforming a collection of tuples to XML forests as outlined earlier in this section.
For each tuple in its input, constructL builds one XML tree for each CTP in L. In our
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example, L contains a single CTP that generates for each tuple an XML tree consisting
of elements of the form <res>{$n,$r}</res>. ⇧

4.5 XML algebra to PACT

Within the global approach depicted in Figure 4.6, this section describes our main
contribution. First, Section 4.5.1 presents the translation of the Extended XQuery
Data Model (or EXDM, in short) into the PACT Data Model. Then, Section 4.5.2
describes the translation of algebraic expressions into PACT plans, which raises the
most complex technical challenges that we have to meet.

XQuery algebraic plans are translated into PACT plans recursively, operator by
operator; for each XQuery operator, the translation outputs one or several PACT op-
erators for which we need to choose (i) the parallelization contract (and possibly its
corresponding key fields), and (ii) the user function, which together determine the
PACT behavior. The hardest to translate are those algebraic operators whose input
cannot be fragmented based on conjunctive key equalities; typical examples of this
situation are disjunctive joins. This is because all massively parallel operators in PACT
are based on key equality comparisons [BEH+10].

Translation rules. As in [RSF06], we use deduction rules to specify our translation.
In a nutshell, a deduction rule describes how the translation is performed when some
conditions are met over the input. Our rules rely on translation judgments, noted as
J , Ji, and are of the form:

cond J1 . . . Jn

J

stating that the translation J (conclusion) is recursively made in terms of translations
J1 . . . Jn (premises) when the (optional) condition cond holds. The translation judg-
ments Ji are optional; their absence denotes that the rule handles the “fixpoint” (start
of the recursive translation).

4.5.1 Translating XML tuples into PACT records

Rules for translating instances of EXDM into those of PACT rely on translation
judgments of the form:

t ! r

which reads as:

“ The EXDM instance t translates into the PACT record r.”

The translation rules appear in Figure 4.12, where + denotes record concatena-
tion. Rules produce records whose key fields are not set yet; as we will see in Sec-
tion 4.5.2, the keys are filled in by the translation.
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vi ! ri i = 1 . . . n

(($V 1, v1), . . . ($V n, vn))! r1+ . . .+rn
(TUPLE)

v :: node
v! (id(v), v)

(XMLNODE)

v :: val
v! (v) (ATOMICVALUE)

v :: C{S} v ⌘ [t1, t2, . . . , tm]
ti ! ri i = 1 . . . m

v! ( (r1, . . . , rm) )
(COLLVALUE)

Figure 4.12: Data model translation rules.

Rule (TUPLE) produces a record from a tuple: it translates each tuple value, and
then builds the output record r by concatenating the results according to tuple order.

Three distinct rules can be triggered by rule (TUPLE). First, rule (XMLNODE) trans-
lates an XML node into a record with two fields: the first one contains the XML ID,
while the second is the text serialization of the XML tree rooted at the node. In turn,
rule (ATOMICVALUE) translates an XML value. Finally, rule (COLLVALUE) translates a tu-
ple collection into a single-field record that contains the nested collection of records
corresponding to the tuples in the input.

4.5.2 Translating algebraic expressions to PACT

Rules for translating an algebraic expression into a PACT plan are based on judg-
ments of the form:

A )P

which reads as:

“The algebraic expressionA translates into a PACT plan P .”

All rules are defined recursively over the structure of their input A ; for instance,
the translation ofA = sel⇢(A 0) relies on the PACT plan P 0 resulting from the trans-
lation of the smaller expressionA 0, and so on.

The specific behavior of each rule is encoded in the choice of the parallelization
contracts (and corresponding keys) and the user functions, so this is what we com-
ment on below.

Overview. Table 4.1 provides an overview on the contracts used by the PACT plans
resulting from our translation. First, observe that the scan, respectively construct,
functionality is integrated into a data source, respectively sink, in the PACT plan. In
turn, unary operators use Map and Reduce contracts depending on their semantics;
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Algebra operators PACT operators (#)

Scan source (1)
Construct sink (1)

Navigation map (1)
Group-by reduce (1)
Flatten map (1)
Selection map (1)
Projection map (1)
Aggregation (on nested field) map (1)
Aggregation (on top-level field) reduce (1)
Duplicate elimination reduce (1)

Cartesian product cross (1)

Conjunctive equality join
Inner match (1)
Outer cogroup (1)
Nested outer cogroup (1)

Disjunctive equality join
(n conjunctions)

Inner match (n)
Outer cogroup (n) & reduce (1)
Nested outer cogroup (n) & reduce (1)

Inequality join
Inner cross (1)
Outer cross (1) & reduce (1)
Nested outer cross (1) & reduce (1)

Table 4.1: Algebra to PACT overview.

the implementation of their UFs is in most of the cases straightforward. Finally, the
translation of the binary operators is more complex, as they have to deal efficiently
with the nested and/or outer nature of some joins, which may result in multiple oper-
ators at the PACT level.

In the following, we formalize the translation algorithms and illustrate them with
examples.

Preliminaries. In the translation, we denote a PACT operator by its parallelization
contract c, user function f and the list K of key field positions in the PACT input. In
particular:

– a unary PACT is of the form cK
f ; if K=;, for simplicity we omit it and use just

c f .
– a binary PACT is of the form cK1,K2

f , assuming that the key of the left input
records consists of the fields K1 and that of the right input records of K2, respec-
tively.

To keep track of attribute position through the translation, we use a set of helper
functions associating to variables from S, the index positions of the corresponding
fields in the PACT records. These functions are outlined in Table 4.2; we use the
term S-records as a shortcut for records obtained by translating tuples that conform
to schema S. The helper functions implementation details are quite straightforward.
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Signature Description

S; V 7!id F Given the variable paths V bound to XML nodes according to S, returns
the index path positions F in S-records corresponding to the XML node
IDs.

S; V 7!v F Given a list of variable paths V bound to XML nodes, atomic values or col-
lections, according to S, returns the index path positions F of the values
of those variables in S-records.

S; V 7!id,v F “Union” of the two previous functions.
S; L 7! L0 Given a list of CTPs L, returns the CTPs L0 where variables are replaced

with corresponding fields in S-records.
S; e 7! e0 Given an ETP e whose root is a variable in S, builds a new ETP e0 rooted

with the corresponding field position in S-records.
S;⇢ 7! ⇢0 Given an predicate ⇢, builds a new predicate ⇢0 where variables are re-

placed with corresponding fields in S-records.
S1, S2;⇢ 7! ⇢0 Given a predicate ⇢ referencing variables in tuples in S1 and S2, generates

a new predicate ⇢0 referencing field positions in S1- and S2-records.

Table 4.2: Auxiliary functions details.

A )P
SA ; L 7! L0

constructL(A )) xmlwriteL0(P )
(CONSTRUCTION)

scan( f )) xmlscan( f )
(SCAN)

Figure 4.13: Border operators translation rules.

4.5.2.1 Border operators translation

Figure 4.13 outlines the translation of border operators.
Rule (CONSTRUCTION) translates the logical constructL operator into a data sink

that uses our output function xmlwrite. For each input record from P , xmlwrite
generates XML content using the list of construction patterns in L0 and writes the
results to a file. Observe that this rule relies on a 7! auxiliary judgment to translate
from the XML construction tree patterns (CTPs) L referring to an instance of our XML
data model, into the patterns L0 which refer to instances of the PACT data model.

Rule (SCAN) translates the logical operator scanf into a data source built up by
means of our input function xmlscan. For each XML document in f , xmlscan returns
a single-field record holding the content of the document.

4.5.2.2 Unary operators translation

Unary operators are translated by the rules in Figure 4.14.
Rule (NAVIGATION) uses an auxiliary judgment that translates the input ETP e into

e0 using SA . Navigation is applied over each record independently, and thus we use
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A )P
SA ; e 7! e0 f := nav(e0)

nave(A )) map f (P )
(NAVIGATION)

A )P
SA ; Gid 7!id G0id SA ; Gv 7!v G0v

K := G0id+ G0v f := grp(K)

grpGid,Gv ,$r(A )) reduceK
f (P )

(GROUP-BY)

A )P
SA ; p 7!v pi f := flat(pi)

flatp(A )) map f (P )
(FLATTEN)

A )P
SA ;⇢ 7! ⇢0 f := sel(⇢0)

sel⇢(A )) map f (P )
(SELECTION)

A )P
SA ; V 7!id,v V 0 f := proj(V 0)

projV (A )) map f (P )
(PROJECTION)

A )P
SA ; p 7!v pi

if p.length 6= 1
then f := aggn(pi, a) U := map f
else K := ; f := agg(pi, a) U := reduceK

f

aggp,a,$r(A )) U(P ) (AGGREGATION)

A )P
SA ; V 7!v K f := dupelim

dupelimV (A )) reduceK
f (P )

(DUPLELIM)

Figure 4.14: Unary operators translation rules.

a PACT with a map contract. The UF is nav, which generates new records from the
(possibly partial) embeddings of e0 in each input record.

Rule (GROUP-BY) translates a group-by expression into a PACT with a reduce con-
tract, as the records need to be partitioned by the value of their grouping fields. The
fields in K , which form the key used by the reduce contract, are obtained appending
G0v to G0id. K is also handed to the grp UF, which creates one record from each input
collection of records. The new record contains the values for each field in K , and a
new field which is the collection of the input records themselves.

Example 2. The following XQuery groups together the people that share interest in
the same auctions:
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a) constructL

grp;,{$o},$s

nave

scan(‘people’)

S3:=($o, $s{$pc, $p, $r{$n}})

S2:=($pc, $p, $o, $r{$n})

S1:=($pc)

e $pc:*

people

$p: person

watches

watch

$o: @open_auction

$n: name
n: $r

b) xmlwriteL0

reducegrp(K)

mapnav(e0)

xmlscan(‘people’)

K:=(#5)

Figure 4.15: Logical expression (a) and corresponding PACT plan (b) for the query in
Example 2.

let $pc := collection( ‘ p e o p l e ’ )
for $p in $pc// people/person , $o in $p/watches/watch/@open_auction
let $n := $p/name
group by $o
return <res ><a>{$o}</a>{$n}</res >

The XML algebraic expression generated from this query is shown in Figure 4.15a.
Using the rules in Figure 4.14, the expression is translated into the PACT plan of
Figure 4.15b. Observe that the grouping variable $o is translated into field position
#5, used as key for the reduce PACT. ⇧

Rule (FLATTEN) translates a flatten expression into a map PACT, that applies the
flattening UF flat on each input record independently. The path pi to the nested
collection is obtained from p using SA .

Rule (SELECTION) produces a map PACT that applies the selection to each record
produced byP . Selection is performed by the sel UF, which uses the filtering condition
⇢0 obtained from ⇢ and SA .

Rule (PROJECTION) translates a projection expression into a PACT using a map
contract. The positions V 0 of the fields that should be kept by the projection are
obtained from V using the schema SA .

The translation of (AGGREGATION) is interesting as it can use one PACT or another,
depending on the path p to the variable being aggregated. If the variable is contained
in a nested collection, i.e., p.length 6= 1, we produce a PACT with a map contract; for
each input record, the aggn UF executes the aggregation operation a over the field
pointed by pi and outputs a record with the aggregation results.

Otherwise, if the aggregation is executed on the complete input collection, we use
a reduce contract wrapping the input in a single group. The agg UF creates an output
record having (i) a field with a nested collection of all input records and (ii) a field
with the result of executing the aggregation a over the field pointed by pi.

Finally, rule (DUPLELIM) translates a duplicate elimination expression into a PACT
with a reduce contract. Each group handed to the UF holds the bag of records
containing the same values in the fields pointed by K; the duplicate elimination UF,
denoted by dupelim, outputs only one record from the group.
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A 1)P 1 A 2)P 2
f := concat

prod(A 1,A 2)) cross f (P 1,P 2)
(CARTESIANPRODUCT)

A 1)P 1 A 2)P 2
SA 1

, SA 2
;⇢ 7! ⇢0 ⇢0*l K1 ⇢0*r K2 f := concat

join⇢(A 1,A 2)) matchK1,K2
f (P 1,P 2)

(^ EQUI-JOIN)

A 1)P 1 A 2)P 2
SA 1

, SA 2
;⇢ 7! ⇢0 ⇢0*l K1 ⇢0*r K2 f := oconcatl

ojoinl
⇢(A 1,A 2)) cogroupK1,K2

f (P 1,P 2)
(LO ^ EQUI-JOIN)

A 1)P 1 A 2)P 2
SA 1

, SA 2
;⇢ 7! ⇢0 ⇢0*l K1 ⇢0*r K2 f := noconcatl

nojoinl
⇢(A 1,A 2)) cogroupK1,K2

f (P 1,P 2)
(NLO ^ EQUI-JOIN)

Figure 4.16: Cartesian product and conjunctive equi-join translation rules.

4.5.2.3 Binary operators translation

The rules for translating these operators are the most complex. The rules them-
selves are depicted in Figure 4.16. We assume that the inputs A 1 and A 2 of the
algebraic binary operator translate into the PACT plans P 1 and P 2.

a) Cartesian product. This operator relies on the simple concatenation UF, taking as
input a pair of records, and outputting their concatenation: concat(r1, r2) = r1+r2.

Rule (CARTESIANPRODUCT) translates a cartesian product into a cross PACT with
a concat UF.

b) Joins with conjunctive equality predicates. This family comprises joins on equal-
ity predicates, which can be inner equi-joins, or outer equi-joins (without loss of gen-
erality we focus on left outer joins).

b.1) Inner conjunctive equi-join. The conjunctive equi-join operator is translated by
rule (^ EQUI-JOIN), as follows. First, the predicate ⇢ over A 1 and A 2 translates into
a predicate ⇢0 over records produced by P 1 and P 2. Then, the list of fields pointed
by the left (*l), resp. right (*r) of the condition ⇢0 are extracted, and finally they
are used as the keys of the generated match PACT.

b.2) Left outer conjunctive equi-join. In the rule (LO ^ EQUI-JOIN), the output PACT
is a cogroup whose keys are taken from the fields of the translated join predicate
⇢0. The CoGroup contract groups the records produced by P 1 and P 2 sharing the
same key. Then, the oconcatl UF that we describe next is applied over each group, to
produce the expected result.

Definition 4 (oconcatl user function). The left outer concatenation UF, oconcatl , of two
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a)
e1 $pc:*

site

people

$p: person

$i: @id $n: name
n: $t

e2 $cc:*

$c: closed_auction

buyer

$b: @person

constructL

nojoinl
$i=$b

nave1
nave2

scan(‘people’) scan(‘closed_auct.’)
S1:=($pc)

S2:=($pc, $p, $i, $t{$n})

S3:=($cc)

S4:=($cc, $c, $b)

S5:=($pc, $p, $i, $t{$n}, $r{$cc, $c, $b})

b)

xmlwriteL0

cogroupnoconcatl

mapnav(e01)
mapnav(e02)

xmlscan(‘people’) xmlscan(‘closed_auct.’)

K1:=(#5) K2:=(#5)

Figure 4.17: Logical expression (a) and corresponding PACT plan (b) for the query in
Example 3.

record bags {{r1, . . . , rx}} and {{r 01, . . . , r 0y}} is defined as:
– If y 6= 0, the cartesian product of the two bags.
– Otherwise, {{r1+ ?0, . . . , rx+ ?0}} i.e., concatenate each left input record with a
?-record having the schema (structure) of the right records. ⇧

b.3) Nested left outer conjunctive equi-join. Similar to the non-nested case,
rule (NLO ^ EQUI-JOIN) translates the nested left outer conjunctive equi-join into a
cogroup PACT whose key is extracted from ⇢0. However, we need a different UF in
order to generate the desired right-hand side nested records. We define the necessary
UF below.

Definition 5 (noconcatl user function). The nested left outer concatenation UF,
noconcatl , of the bags {{r1, . . . , rx}} and {{r 01, . . . , r 0y}} is defined as:

– If y 6= 0, {{r1+(r 01, . . . , r 0y), . . . , rx+(r 01, . . . , r 0y)}} i.e., nest the right set as a new
field concatenated to each record from the left.

– Otherwise, {{r1+(?0), . . . , rx+(?0)}} i.e., add to each left record a field with a list
containing a ?-record conforming to the schema of the right records. ⇧

Example 3. The following XQuery extracts the name of users and the items that they
bought (if any):
let $pc := collection( ‘ p e o p l e ’ ),

$cc := collection( ‘ c l o s e d_au c t i o n s ’ )
for $p in $pc/site/people/person , $i in $p/@id
let $n := $p/name
let $r :=

for $c in $cc// closed_auction , $b in $c/buyer/@person
let $a := $c/itemref
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A 1)P 1 A 2)P 2
SA 1

, SA 2
;⇢ 7! ⇢0 ⇢0 ⌘ ⇢01 _⇢02 _ . . ._⇢0n

⇢0k *l K1k ⇢0k *r K2k fk := pnjoin(⇢0, k�1) k = 1 . . . n
U := {matchK11,K21

f1
, . . . ,matchK1n,K2n

fn
}

join⇢(A 1,A 2)) U(P 1,P 2)
(_ EQUI-JOIN)

A 1)P 1 A 2)P 2
SA 1

, SA 2
;⇢ 7! ⇢0 ⇢0 ⌘ ⇢01 _⇢02 _ . . ._⇢0n

⇢0k *l K1k ⇢0k *r K2k fk := nopnjoinl(⇢
0, k�1) k = 1 . . . n

U := {cogroupK11,K21
f1

, . . . ,cogroupK1n,K2n
fn
}

SA 1
† K f 0 := opostl_

ojoinl
⇢(A 1,A 2)) reduceK

f 0(U(P 1,P 2))
(LO _ EQUI-JOIN)

A 1)P 1 A 2)P 2
SA 1

, SA 2
;⇢ 7! ⇢0 ⇢0 ⌘ ⇢01 _⇢02 _ . . ._⇢0n

⇢0k *l K1k ⇢0k *r K2k fk := nopnjoinl(⇢
0, k�1) k = 1 . . . n

U := {cogroupK11,K21
f1

, . . . ,cogroupK1n,K2n
fn
}

SA 1
† K f 0 := nopostl_

nojoinl
⇢(A 1,A 2)) reduceK

f 0(U(P 1,P 2))
(NLO _ EQUI-JOIN)

Figure 4.18: Disjunctive equi-join translation rules.

where $i = $b
return $a

return <res >{$n,$r}</res >

The query translates into the algebraic expression depicted in Figure 4.17a, while
the corresponding PACT plan is shown in Figure 4.17b.

Rule (NLO ^ EQUI-JOIN) translates the nested left outer conjunctive equi-join into
a PACT with a cogroup contract that groups together all records having the same
values in the fields corresponding to $i (K1) and $b (K2), and applies our noconcatl
UF on them. ⇧

c) Joins with disjunctive equality predicates. We focus now on disjunctive equi-
joins, i.e., joins where the predicate is of the form ⇢1 _ ⇢2 _ . . ._ ⇢n for some n � 2,
and each ⇢i is a conjunctive predicate containing only equality comparisons.

Translating joins with disjunctive equality predicates is more involved. The rea-
son is that PACT contracts are centered around equality of record fields, and thus
inherently not suited to semantics of disjunctive conditions. To solve this mismatch,
our translation relies on using more than one PACT for each operator, as we explain
below.

c.1) Inner disjunctive equi-join. In rule (_ EQUI-JOIN), the predicate ⇢0 is generated
from ⇢ using SA 1

and SA 2
. Then, for each conjunctive predicate ⇢0k in ⇢0, we create

a match whose keys are the fields participating in ⇢0k. Observe that the UFs of these
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a)
e1 $pc:*

site

people

$p: person

$i: @id $n: name
n: $r

e2 $cc:*

$c: closed_auction

buyer

$b: @person

seller

$s: @person

constructL

join$i=$b_$i=$s

nave1
nave2

scan(‘people’) scan(‘closed_auct.’)
S1:=($pc)

S2:=($pc, $p, $i, $r{$n})

S3:=($cc)

S4:=($cc, $c, $b, $s)

S5:=($pc, $p, $i, $r{$n}, $cc, $c, $b, $s)

b)
K1 := (#5)
K2 := (#5)
K 01 := (#5)
K 02 := (#7)
⇢0 := (#5=#5)_ (#5=#7)

xmlwriteL0

matchpnjoin(⇢0,0) matchpnjoin(⇢0,1)

mapnav(e01)
mapnav(e02)

xmlscan(‘people’) xmlscan(‘closed_auct.’)

K1
K 01K2 K 02

Figure 4.19: Logical expression (a) and corresponding PACT plan (b) for the query in
Example 4.

match operators should guarantee that no erroneous duplicate is generated when the
evaluation of more than one conjunctive predicates ⇢0i ,⇢

0
j, i 6= j is true for a certain

record. To that purpose, we define the new UF pnjoin below, parameterized by k and
performing a partial negative join.

Definition 6 (pnjoin user function). Let ⇢0 = ⇢01 _ ⇢02 _ . . . _ ⇢0n and k be an integer,
with 0  k < n. Given two records r1, r2, the pnjoin(⇢0, k) UF evaluates ⇢01 _ . . . _ ⇢0k
over r1, r2, and outputs r1+r2 if the result is false. ⇧

Note that the UF ensures correct multiplicity of each record in the result.

Example 4. The following XQuery extracts the names of users involved in at least
one auction, either as buyers or sellers:
let $pc := collection( ‘ p e o p l e ’ ),

$cc := collection( ‘ c l o s e d_au c t i o n s ’ )
for $p in $pc/site/people/person , $i in $p/@id , $c in $cc// closed_auction ,

$b in $c/buyer/@person , $s in $c/seller/@person
let $n := $p/name
where $i = $b or $i = $s
return <res >{$n}</res >

Rule (_ EQUI-JOIN) translates the disjunctive equi-join into two PACTs with match
contracts, one per disjunction. Observe that two distinct values (0 and 1) of k are
used in the pnjoin UFs to prevent spurious duplicates, one for the predicate $i=$b
and one for $i=$s. ⇧

c.2) (Nested) left outer disjunctive equi-join. The translation of the plain and
nested variants of the outer disjunctive equi-join, described by the (LO _ EQUI-JOIN)
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and (NLO _ EQUI-JOIN) rules respectively, are very similar; as illustrated next, the
main difference resides in the different post-processing operations they adopt. The
translation of these two operators is challenging because we want to ensure parallel
evaluation of each conjunctive join predicate in the disjunction, and at the same time
we need to:

1. Avoid the generation of duplicate records. To achieve this goal, we adopt a non
trivial variation of the technique used previously for disjunctive equi-join.

2. Recognise records generated by the left hand-side expression which do not join any
record coming from the right-hand side expression. For this purpose, we use the
XML node identifiers in each left hand-side record to identify it uniquely, so
that, after the parallel evaluation of each conjunction, a Reduce post-processing
PACT groups all resulting combinations having the same left hand-side record.
If no combination exists, the left hand-side record representing a group is con-
catenated to a (nested) ?-record conforming to the right input schema, and the
resulting record is output; otherwise the output record(s) are generated from
the combinations.

In the first step, we must evaluate in parallel the joins related to predicates ⇢0i . A
PACT with a cogroup contract is built for each conjunctive predicate ⇢0k. Each such
PACT groups together all records that share the same value in the fields pointed by ⇢0k,
then applies the nopnjoinl UF (see below) on each group, with the goal of avoiding
erroneous duplicates in the result; the UF is more complex than pnjoin though, as it
must handle disjunction and nesting. The nopnjoinl function is parameterized by k,
as we will use it once for each conjunction ⇢0k. Furthermore, nopnjoinl takes as input
two bags of records and is defined as follows, along the lines of pnjoin.

Definition 7 (nopnjoinl user function). Let ⇢0 = ⇢01 _ ⇢02 _ . . . _ ⇢0n be a predicate
where each ⇢0i is conjunctive. Given two input bags {{r1, . . . , rx}} and {{r 01, . . . , r 0y}}, the
nopnjoinl(⇢0, k) UF is defined as follows:

– If the second input is empty (y = 0), return {{r1+(?0), . . . , rx+(?0)}} i.e., con-
catenate every left input record with a field containing a nested list of one ?-record
conforming to the schema of the right input.

– Otherwise, for each left input record ri:

1. create an empty list ci;

2. for each r 0j,1 jy , evaluate ⇢01 _⇢02 _ . . ._⇢0k over ri and r 0j , and add r 0j to ci
if the result is false;

3. if ci is empty, then insert into ci a?-record with the schema of the right input;

4. output ri concatenated with a new field whose value is ci. ⇧

The second PACT produced by the (LO _ EQUI-JOIN) and (NLO _ EQUI-JOIN) rules
uses a reduce contract, taking as input the outputs of all the cogroup operators; its
key consists of the XML node identifiers in each left hand-side record (we denote by
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K1 := (#5)
K2 := (#5)
K 01 := (#5)
K 02 := (#7)
⇢0 := #5=#5_ #5=#7
K3 := (#0,#2,#4)

xmlwriteL0

reducenopostl_

cogroupnopnjoinl (⇢0,0)
cogroupnopnjoinl (⇢0,1)

mapnav(e01)
mapnav(e02)

xmlscan(‘people’) xmlscan(‘closed_auctions’)

K1
K 01 K2

K 02

K3 K3

Figure 4.20: PACT plan corresponding to the logical expression in Figure 4.11.

† the extraction of these fields from the schema). This amounts to grouping together
the records originated from the same left input record.

Depending on the join flavor though, this last PACT uses a different UF.
– For the plain (non-nested) join (LO _ EQUI-JOIN), we use the opostl_ UF pro-

ducing records with an unnested right side. The semantics is introduced in the
following.

– For the nested join (NLO _ EQUI-JOIN), on the other hand, the nopostl_ UF is
used to produce nested records.

The semantics of these UFs is introduced in the following.

Definition 8 (opostl_ user function). Consider an input bag of records {{r1, . . . , rx}}.
Each record ri,1ix is separated in left and right side, i.e. ri = r l

i+r r
i . Further, r r

i
contains a single field with a nested collection of records Ri. We denote by opostl_ the
post-processing UF defined as follows:

– If all nested collections Ri,1ix contain only ?-records, the UF outputs a single
record r = r l

i+ ?0, where r l
i is the left side of any input record and ?0 is the

?-record conforming to the signature of the records in Ri.
– Otherwise, it flattens the nested collections Ri,1ix excluding ?-records, and re-

turns the result. ⇧

Definition 9 (nopostl_ user function). Consider an input bag of records {{r1, . . . , rx}}.
Each record ri,1ix is separated in left and right side, i.e. ri = r l

i+r r
i . Further, r r

i
contains a single field with a nested collection of records Ri. We denote by nopostl_ the
post-processing UF that outputs a single record r = r l

i+r 0, where:
– If all nested collections Ri,1ix contain only ?-records, r 0 contains a field with a

nested collection with a ?-record conforming to the signature of the records in Ri.
– Otherwise, r 0 contains a field with a nested collection of the records contained in

Ri,1ix , excluding ?-records. ⇧
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A 1)P 1 A 2)P 2

SA 1
, SA 2

;⇢ 7! ⇢0 f := pnjoin(⇢0)

join⇢(A 1,A 2)) cross f (P 1,P 2)
(INEQUI-JOIN)

A 1)P 1 A 2)P 2

SA 1
, SA 2

;⇢ 7! ⇢0 f := ojoinl(⇢
0)

SA 1
† K f 0 := opostl

ojoinl
⇢(A 1,A 2)) reduceK

f 0(cross f (P 1,P 2))
(LO INEQUI-JOIN)

A 1)P 1 A 2)P 2

SA 1
, SA 2

;⇢ 7! ⇢0 f := ojoinl(⇢
0)

SA 1
† K f 0 := nopostl

nojoinl
⇢(A 1,A 2)) reduceK

f 0(cross f (P 1,P 2))
(NLO INEQUI-JOIN)

Figure 4.21: Inequi-join translation rules.

Example 1 (continuation). Our algorithms translate the algebraic expression shown
in Figure 4.11 into the PACT plan depicted in Figure 4.20. This plan is the same as
the one that has been shown in less detail in Figure 4.1.

Rule (NLO _ EQUI-JOIN) translates the nested left outer disjunctive equi-join into
(i) two PACTs with cogroup contracts, one for each disjunction, and (ii) a PACT with
a reduce contract that groups together records originating from the same left-hand
side record, i.e., K3 holds field positions #0,#2,#4, which contain the XML node
identifiers of $pc, $p, $i, respectively. ⇧

d) Inequality joins. Our XQuery fragment also supports joins with inequality condi-
tions. In this case, the translation uses cross contracts. Further, just like for joins
with disjunctive predicates, the non-nested and nested outer variants of the inequi-
join require more than one PACT. We depict the corresponding translation rules in
Figure 4.21. In the following, we explain the translation of this flavor of joins.

d.1) Inner inequi-join. Rule (INEQUI-JOIN) generates a PACT with a cross contract.
The predicate ⇢ is transformed into ⇢0, which is equivalent but replaces the EXDM
variables by positions in the PACTs records. Then the pnjoin UF introduced in the
following is applied over each pair of records.

Definition 10 (pnjoin user function). Given two records r1, r2 and a predicate ⇢0, the
pnjoin(⇢0) UF evaluates ⇢0 over r1, r2, and outputs r1+r2 if it evaluates to true. ⇧

d.2) (Nested) left outer inequi-join. Similarly with the case of disjunctive equality
predicates, the translations of the non-nested and nested variant of the outer inequi-
join, described by the (LO INEQUI-JOIN) and (NLO INEQUI-JOIN) rules respectively, re-
semble each other.
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The translation of the non-nested and nested left outer inequi-join results in two
steps. The first step consists of a PACT with a cross contract. The UF of the PACT is
ojoinl , a traditional left outer join, that we introduce in the following.

Definition 11 (ojoinl user function). Given two records r1, r2 and a predicate ⇢0, the
ojoinl(⇢0) UF evaluates ⇢0 over r1, r2, and:

– If it evaluates to true, outputs r1+r2.
– Otherwise, it outputs r1+ ?2, where ?2 is the ?-record that conforms to the sig-

nature of r2. ⇧

The last PACT resulting from both translation rules uses a reduce contract that
groups together the records originated from the same left hand-side record. In the
plain variant, the UF is opostl that produces unnested records; otherwise, the PACT
uses the nopostl UF. We introduce both UFs in the following.

Definition 12 (opostl user function). Consider an input bag of records {{r1, . . . , rx}}.
Each record ri,1ix is separated in left and right side, i.e. ri = r l

i+r r
i . We denote by

opostl the post-processing UF which:
– If r r

i,1ix are all ?-records, it outputs one of them.
– Otherwise, it returns every ri,1ix where r r

i is not a ?-record. ⇧

Definition 13 (nopostl user function). Consider an input bag of records {{r1, . . . , rx}}.
Each record ri,1ix is separated in left and right side, i.e. ri = r l

i+r r
i . We denote by

nopostl the post-processing UF that outputs a single record r = r l
i+r 0, where:

– If r r
i,1ix are all ?-records, r 0 contains a field with a nested collection with a

?-record that conforms to the signature of r r
i .

– Otherwise, r 0 contains a field with a nested collection with every r r
i,1ix that is not

a ?-record. ⇧

Example 5. Consider the following XQuery that extracts the name of users and (if
any) the items they bought that were valued more than their monthly incoming:
let $pc := collection( ‘ p e o p l e ’ ),
$cc := collection( ‘ c l o s e d_au c t i o n s ’ )

for $p in $pc/site/people/person
let $n := $p/name
let $r :=

for $c in $cc// closed_auction , $i in $p/@id , $b in $c/buyer/@person ,
$x in $p/profile/@income , $y in $c/price

let $a := $c/itemref
where $i = $b and $x < $y
return $a

return <res >{$n,$r}</res >

The XML algebra expression generated from this query is shown in Figure 4.22a.
Using the rule (LO INEQUI-JOIN) in Figure 4.21, the algebraic expression corresponding
to the query is translated into the PACT plan depicted in Figure 4.22b. ⇧
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a)
e1 $pc:*

site

people

$p: person

$i: @id profile

$x: @income

e2 $cc:*

$c: closed_auction

buyer

$b: @person

$y: price $a: itemref
n: $t

e3 $p:*

$n: name
n: $s

constructL

nave3

grp{$p},;,$r

ojoinl
$i=$b_$x<$y

nave1
nave2

scan(‘people’) scan(‘closed_auctions’)
S1:=($pc)

S2:=($pc, $p, $i, $x)

S3:=($cc)

S4:=($cc, $c, $b, $y, $t{$a})

S5:=($pc, $p, $i, $x , $cc, $c, $b, $y, $t{$a})

S6:=($p, $r{$pc, $i, $x , $cc, $c, $b, $y, $t{$a}})

S7:=($p, $r{$pc, $i, $x , $cc, $c, $b, $y, $t{$a}}, $s{$n})

b) ⇢0 := #5=#5_ #7<#7
K1 := (#0,#2)
K2 := (#2)

xmlwriteL0

mapnav(e03)

reducegrp(K2)

reduceopostl

crossojoinl (⇢0)

mapnav(e01)
mapnav(e02)

xmlscan(‘people’) xmlscan(‘closed_auctions’)

K1

K2

Figure 4.22: Logical expression (a) and corresponding PACT plan (b) for the query in
Example 5.

Syntactically complex translation vs. performance. Clearly, complex joins such as
those considered in point c) above could be translated into a single cross PACT over
the pairs of records as in d). However, this would be less efficient and scale poorly,
since it entails a number of comparisons quadratic in the input size. The interest of
the more complex, alternative translation procedure we propose is confirmed by our
experiments.
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4.6 Experimental evaluation

We implemented our PAXQuery translation approach in Java 1.6, and relied on
the Stratosphere platform [Str] supporting PACT. The source code amounts to about
27000 lines and 170 classes. We first describe the experimental setup, and then
present our results.

Experimental setup. The experiments run in a cluster of 8 nodes on an 1GB Ethernet.
Each node has a 2.93GHz Quad Core Xeon processor, 16GB RAM and two 600GB SATA
hard disks and runs Linux CentOS 6.4. PAXQuery is built on top of Stratosphere 0.2.1;
it stores the XML data in HDFS 1.1.2.

XML data. We used XMark generated synthetic XML documents [SWK+02]. To study
queries joining several documents, we used the split option of the XMark generator
to create four collections of XML documents, each containing a specific type of XMark
subtrees: users (10% of the dataset size), items (50%), open auctions (25%) and closed
auctions (15%). We used datasets of up to 272GB as detailed below.

All documents are simply stored in HDFS (which replicates them three times), that
is, we do not control the distribution/allocation of documents over the nodes.

XML queries. We used a subset of XMark queries from our XQuery fragment, and
added queries with features supported by our dialect but absent from the original
XMark, e.g., joins on disjunctive predicates; all queries are detailed in Appendix A.

Table 4.3 outlines the queries: the collection(s) that each query carries over, the
corresponding XML algebraic operators and their numbers of occurrences, and the
parallelization contracts used in the plan generated by our translation framework.
Queries q9-q14 all involve value joins, which carry over thousands of documents arbitrar-
ily distributed across the HDFS nodes.

4.6.1 PAXQuery scalability

Our first goal is to check that PAXQuery brings to XQuery evaluation the desired
benefits of implicit parallelism. For this, we fixed a set of queries, generated 11.000
documents (34GB) per node, and varied the number of nodes from 1 to 2, 4, 8
respectively; the total dataset size increases accordingly in a linear fashion, up to
272GB.

Figure 4.23 shows the response times for each query. Queries q1-q6 navigate in
the input document according to a given navigation pattern of 5 to 14 nodes; each
translates into a map PACT, thus their response time follows the the size of the input.
These queries scale up well; we see a moderate overhead in Figure 4.23 as the data
volume and number of nodes increases.

Queries q7 and q8 apply an aggregation over all the records generated by a navi-
gation. For both queries, the navigation generates nested records and the aggregation
consists on two steps. The first step goes over the nested fields in each input record,
and thus it uses a map contract. The second step is executed over the results of the
first. Therefore, a reduce contract that groups together all records coming from the
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Query Collections Algebra operators (#) Parallelization contracts (#)

q1 users Navigation (1) map (1)
q2 items Navigation (1) map (1)
q3 items Navigation (1) map (1)
q4 closed auctions Navigation (1) map (1)
q5 closed auctions Navigation (1) map (1)
q6 users Navigation (1) map (1)
q7 closed auctions Navigation (1) map (2)

Aggregation (2) reduce (1)
q8 items Navigation (1) map (2)

Aggregation (2) reduce (1)
q9 users Navigation (2) map (3)

closed auctions Projection (1) reduce (1)
Group-by/aggregation (1) match (1)
Conj. equi-join (1)

q10 users Navigation (3) map (5)
items Projection (2) cogroup (2)
closed auctions NLO conj. equi-join (2)

q11 users Navigation (2) map (3)
Projection (1) reduce (1)
Duplicate elimination (1) cogroup (1)
NLO conj. equi-join (1)

q12 users Navigation (2) map (3)
closed auctions Projection (1) cogroup (1)

NLO conj. equi-join/aggregation (1)
q13 users Navigation (2) map (3)

closed auctions Projection (1) reduce (2)
NLO disj. equi-join (1) cogroup (2)

q14 users Navigation (2) map (3)
open auctions Projection (1) reduce (2)

NLO ✓ -join (1) cross (1)

Table 4.3: Query details.

previous operator is used. Since the running time is dominated by the map PACTs
which parallelize very well, q7 and q8 also scale up well.

Queries q9-q12 involve conjunctive equi-joins over the collections. Query q13 exe-
cutes a NLO disjunctive equi-join, while q14 applies a NLO ✓ -join. We notice a very
good scaleup for q9-q13, whose joins are translated in many PACTs (recall the rules
in Figure 4.18). In contrast, q14, which translates into a cross PACT, scales notice-
ably less well. This validates the interest of translating disjunctive equi-joins into many
PACTs (as our rules do), rather than into a single cross, since, despite parallelization,
it fundamentally does not scale.
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Figure 4.23: PAXQuery scalability evaluation.

Query
Evaluation time (seconds)

BaseX Saxon-PE Qizx/open PAXQuery

q1 206 145 90 72
q2 629 OOM OOM 125
q3 600 OOM OOM 120
q4 189 OOM 84 51
q5 183 125 183 51
q6 233 162 109 70
q7 181 111 88 54
q8 599 OOM OOM 126
q9 TO OOM OOM 94
q10 OOM OOM OOM 229
q11 TO TO TO 236
q12 TO OOM OOM 113
q13 TO OOM OOM 424
q14 OOM OOM OOM 331

Table 4.4: Query evaluation time (1 node, 34GB).

4.6.2 Comparison against other processors

To evaluate the performance of our processor against existing alternatives, we
started by comparing it on a single node with other popular centralized XQuery pro-
cessors. The purpose is to validate our choice of an XML algebra as outlined in Sec-
tion 4.4.2 as input to our translation, by demonstrating that single-site query evalu-
ation based on such an algebra is efficient. For this, we compare our processor with
BaseX 7.7 [Bas], Saxon-PE 9.4 [Sax] and Qizx/open 4.1 [Qiz], on a dataset of 11000
XML documents (34GB).

Table 4.4 shows the response times for each query and processor; the shortest time
is shown in bold, while OOM stands for out of memory, and TO for timeout (above 2
hours). In Table 4.4, we identify two query groups.

– In the first group, q1-q8 do not feature joins. While the performance varies
across systems, only BaseX and PAXQuery are able to run all these queries.
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PAXQuery outperforms other systems because, compiled in PACT, it is able to
exploit the multicore architecture.

– In the second group, queries q9-q14 join across the documents. None of the com-
peting XQuery processors completes their evaluation, while PAXQuery executes
them quite fast. For these, the usage of outer joins and multicore parallelization
are key to this good performance behavior.

We next compare our system with other alternatives for implicitly parallel evalua-
tion of XQuery. As explained in the Introduction, no comparable system is available
yet. Therefore, for our comparison, we picked the BaseX centralized system (the best
performing in the experiment above) and used Hadoop-MapReduce on one hand, and
Stratosphere-PACT on the other hand, to parallelize its execution.

We compare PAXQuery, relying on the XML algebra-to-PACT translation we de-
scribed, with the following alternative architecture. We deployed BaseX on each node,
and parallelized XQuery execution based on these installed servers as follows:

1. Manually decompose each query into a set of leaf subqueries performing just
tree pattern navigation, followed by a recomposition subquery which applies
(possibly nested, outer) joins over the results of the leaf subqueries;

2. Parallelize the evaluation of the leaf subqueries through one Map over all the
documents, followed by one Reduce to union all the results. Moreover, if the re-
composition query is not empty, start a new MapReduce job running the recom-
position XQuery query over all the results thus obtained, in order to compute
complete query results.

This alternative architecture is in-between ChuQL [KCS11], where the query
writer explicitly controls the functionality of the Map and Reduce blocks, i.e., MapRe-
duce is visible at the query level, and PAXQuery where parallelism is completely hid-
den. In this architecture, q1-q8 translate to one map and one reduce, whereas q9-q14
feature joins which translates into a recomposition query and thus a second job. As
we will illustrate with the following example, the manual decomposition takes a con-
siderable effort.

Example 1 (continuation). The MapReduce and PACT plans that execute the XQuery
introduced in Section 4.2 are depicted in Figure 4.24.

Observe that the MapReduce workflow contains two jobs:

1. The first job creates a key/value pair out of each document in each collection,
which contains the document’s content. The pairs are correspondingly labeled
so that they can be identified in the following steps. The map user function
uses BaseX to execute a navigation query on the content of each input pair;
q1 is equivalent to the tree pattern e1 in Figure 4.11, while q2 is equivalent to
e2. In turn, the reduce gathers the pairs that originated from the same col-
lection in a group, and applies a user function that unions the results for each
of these collections, thus creating files f1 and f2 for collections ‘people’ and
‘closed_auctions’, respectively. Note that the reduce operation is necessary be-
cause we execute a nested outer join between the results from both collections
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a) filewriter | R3

map | R3=BaseX(q3, f1, f2)

filereader | f1, f2

filewriter | f1, f2

reduce | f1=union(R1 . . . Rn), f2=union(S1 . . . Sm)

map | R1=BaseX(q1,x1),. . .,Rn=BaseX(q1,xn),S1=BaseX(q2,y1),. . .,Sm=BaseX(q2,ym)

filereader | x1=read(‘people’,1),. . .,xn=read(‘people’,n),y1=read(‘closed_auct.’,1),. . .,ym=read(‘closed_auct.’,m)

Job 2 (nested outer join)

Job 1 (navigation)

b) filewriter | R3

map | R3=BaseX(q3, f1, f2)

reduce | f1=union(R1 . . . Rn), f2=union(S1 . . . Sm)

map | R1=BaseX(q1,x1),. . .,Rn=BaseX(q1,xn) map | S1=BaseX(q2,y1),. . .,Sm=BaseX(q2,ym)

filereader | x1=read(‘people’,1),. . .,xn=read(‘people’,n) filereader | y1=read(‘closed_auct.’,1),. . .,ym=read(‘closed_auct.’,m)

Figure 4.24: Execution of the XQuery in Example 1 using alternative architectures
based on MapReduce (a) and PACT (b) for comparison with PAXQuery.

in the subsequent step. Without using our parallelization algorithms, it means
that BaseX needs a global view over the results from each collection.

2. The second step is expressed as a Map-only job. It reads the inputs from the
first job, and then it uses BaseX to execute the nested outer join between the
inputs. The result is then written to disk.

The PACT plan is analog to the one that we just presented, but observe that in this
case we do not have a linear workflow, but a DAG of operators. ⇧

Table 4.5 shows the response times when running the query on the 8 nodes and
272GB; the shortest time is in bold. First, we notice that BaseX runs 2 to 5 times
faster on Stratosphere than on Hadoop. This is due to Hadoop’s checkpoints (writ-
ing intermediary results to disk) while Stratosphere currently does not perform such
checkpoints, trading reliability for speed. For queries without joins (q1-q8), PAXQuery
is faster for most queries than BaseX on Hadoop or Stratosphere; this simply points
out that our in-house tree pattern matching operator (physical implementation of
nav) is more efficient than the one of BaseX. Queries with joins (q9-q14) fail in the
competitor architecture again. The reason is that intermediary join results grow too
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Query
Evaluation time (seconds)

BaseX BaseX
PAXQuery

Hadoop-MR Stratosphere-PACT

q1 465 66 70
q2 773 282 189
q3 762 243 172
q4 244 72 58
q5 237 72 57
q6 488 70 73
q7 245 74 62
q8 576 237 206
q9 OOM OOM 114
q10 OOM OOM 299
q11 OOM OOM 334
q12 OOM OOM 132
q13 OOM OOM 456
q14 OOM OOM 683

Table 4.5: Query evaluation time (8 nodes, 272GB).

large and this leads to an out-of-memory error. PAXQuery evaluates such queries well,
based on its massively parallel (outer) joins.

4.6.3 Conclusions of the experiments

Our experiments demonstrate the efficiency of an XQuery processor built on top
of PACT.

First, our scalability evaluation has shown that the translation to PACT allows PAX-
Query to parallelize every query execution step with no effort required to partition,
redistribute data etc., and thus to scale out with the number of machines in a cluster.
The only case where scale-up was not so good is q14 where we used a cross (carte-
sian product) to translate an inequality join; an orthogonal optimization here would
be to use a smarter dedicated join operator for such predicates, e.g. [OR11].

Secondly, we have shown that PAXQuery outperforms competitor XQuery proces-
sors, whether centralized or distributed over Hadoop and Stratosphere. None of the
competing processors was able to evaluate any of our queries with joins across docu-
ments on the data volumes we considered, highlighting the need for efficient parallel
platforms for evaluating such queries.

4.7 Related work

Massively parallel XML query processing. In this area, MRQL [FLGP11] proposes
a simple SQL-like XML query language implemented through a few operators directly
compilable into MapReduce. Like our XQuery fragment, MRQL queries may be nested,
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however, its dialect does not allow expressing the rich join flavours that we use. Fur-
ther, the XML navigation supported by MRQL is limited to XPath, in contrast to our
richer navigation based on tree patterns with multiple returning nodes, and nested
and optional edges.

ChuQL [KCS11] is an XQuery extension that exposes the MapReduce framework
to the developer in order to distribute computations among XQuery engines; this
leaves the parallelization work to the programmer, in contrast with our implicitly
parallel approach which does not expose the underlying parallelism at the query level.

HadoopXML [CLK+12] and the recent [BCM+13] process XML queries in Hadoop
clusters by explicitly fragmenting the input data in a query-driven, respectively,
schema-driven way, which is effective when querying one single huge document. In
contrast, we focus on the frequent situation when no single document is too large for
one node, but there are many documents whose global size is high, and queries may
both navigate and join over them. Further, we do not require any partitioning work
from the application level.

After the wide acceptance of Hadoop, other parallel execution engines and pro-
gramming abstractions conceived to run custom data intensive tasks over large data
sets have been proposed: PACT [BEH+10], Dryad [IBY+07], Hyracks [BCG+11] or
Spark [ZCD+12]. Among these, the only effort at parallelizing XQuery is the ongoing
VXQuery project [VXQ], translating XQuery into the Algebricks algebra, which com-
piles into parallel plans executable by Hyracks. In contrast, PAXQuery translates into
an implicit parallel logical model such as PACT. Thus, our algorithms do not need to
address underlying parallelization issues such as data redistribution between compu-
tation steps etc. which [BCG+11] explicitly mentions.

XQuery processing in centralized settings has been thoroughly studied, in particu-
lar through algebras in [RSF06, DPX04, MHM06, MPV09]. Our focus is on extending
the benefits of implicit large-scale parallelism to a complex XML algebra, by formalizing
its translation into the implicitly parallel PACT paradigm.

XML data management has also been studied from many other angles, e.g., on top
of column stores [BGvK+06], distributed with [KOD10] or without [ABC+03] an ex-
plicit fragmentation specification, in P2P [KP05] etc. We focus on XQuery evaluation
through the massively parallel PACT framework, which leads to specific translation
difficulties we addressed.

Parallelizable nested languages. Recently, many high-level languages which trans-
late into massively parallel frameworks have been proposed; some of them work with
nested data and/or feature nesting in the language, thus somehow resemble XQuery.

Jaql [BEG+11] is a scripting language tailored to JSON data, which translates
into MapReduce; Meteor [HRL+12], also for JSON, translates into PACT. None of
these languages handles XQuery semantics exactly, since JSON does not feature node
identity; the languages are also more limited, e.g., Jaql only supports equi-joins.

The Asterix Query Language [BBC+11], or AQL in short, is based on FLOWR
expressions and resembles XQuery, but ignores node identity which is important in
XQuery and which we support. Like VXQuery, AQL queries are translated into Alge-
bricks; recall that unlike our translation, its compilation to the underlying Hyracks
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engine needs to deal with parallelization related issues.
Finally, other higher level languages that support nested data models and translate

into parallel processing paradigms include Pig Latin [ORS+08] or Hive [TSJ+10]. Our
XQuery fragment is more expressive, in particular supporting more types of joins. In
addition, Pig only allows two levels of nesting in queries, which is a limitation. In
contrast, we translate XQuery into unnested algebraic plans with (possibly nested,
possibly outer) joins and grouping which we parallelize, leading to efficient execution
even for (originally) nested queries.

Complex operations using implicit parallel models. The problem of evaluat-
ing complex operations through implicit parallelism is of independent interest. For
instance, the execution of join operations using MapReduce has been studied ex-
tensively. Shortly after the first formal proposal to compute equi-joins on MapRe-
duce [YDHP07], other studies extending it [BPE+10, JTC11] or focusing on the
processing of specific join types such as multi-way joins [AU10], set-similarity
joins [VCL10], or ✓ -joins [OR11], appeared. PAXQuery is the first to translate a
large family of joins (which can be used outside XQuery), into the more flexible PACT
parallel framework.

4.8 Summary

This chapter has presented the PAXQuery approach for the implicit parallelization
of XQuery, through the translation of an XQuery algebraic plan into a PACT parallel
plan. We targeted a rich subset of XQuery 3.0 including recent additions such as
explicit grouping, and demonstrated the efficiency and scalability of PAXQuery with
experiments on collections of hundreds of GBs.

Acknowledgements This work has been partially funded by the KIC EIT ICT Labs
activity 12115. We would like to thank Kostas Tzoumas for his valuable comments
and suggestions on this work.
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Chapter 5

Reuse-based Optimization for Pig
Latin

This chapter presents a novel approach for identifying and reusing repeated subex-
pressions in Pig Latin scripts. In particular, we lay the foundation of our reuse-based
algorithms by formalizing the semantics of the Pig Latin query language with ex-
tended nested relational algebra for bags. Our optimization algorithm, named Pi-
gReuse, operates on the algebraic representations of Pig Latin scripts. It identifies
subexpression merging opportunities, selects the best ones to execute based on a cost
function, and reuses their results as needed in order to compute exactly the same
output as the original scripts. Our experiments demonstrate the efficiency and effec-
tiveness of the PigReuse algorithm.

The material of this chapter is being considered for publication in an international
conference.

5.1 Introduction

The efficient processing of very large volumes of data has lately relied on mas-
sively parallel processing models, of which MapReduce is the most widely adopted.
However, the simplicity of the MapReduce model leads to relatively complex pro-
grams to express even moderately complex tasks. To facilitate the specification of
data processing tasks to be executed in a massively parallel fashion, several higher-
level query languages have been introduced, which are more user-friendly, and which
are automatically compiled into MapReduce programs. Languages that have gained
wide adoption include Pig Latin [ORS+08], HiveQL [TSJ+10], or Jaql [BEG+11].

In this work, we consider the Pig Latin language, which has raised significant in-
terest from the application developers as well as the research community. Pig Latin
provides dataflow-style primitives for expressing complex analytical data processing
tasks. Pig Latin programs (also named scripts) are automatically optimized and com-
piled into MapReduce jobs by the Apache Pig system [Piga].

In a typical batch of Pig Latin scripts, there may be many identical (or equivalent)

89
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sub-expressions, that is: script fragments applying the same processing on the same
inputs, but appearing in distinct places within the same (or several) scripts. While the
Pig Latin engine includes a query optimizer, it is currently not capable of recognizing
such repeated subexpressions. As a consequence, they will be executed as many times
as they appear in the Pig Latin script batch, whereas there is obviously an opportunity
for enhancing performance by identifying common subexpressions, executing them
only once, and reusing the results of the computation in every script needing them.

Identifying and reusing common subexpressions occurring in Pig Latin scripts auto-
matically is the target of the present work. The problem bears obvious similarities
with the known multi-query optimization and workflow reuse problems; however, as
we discuss in Section 5.6, the Pig Latin setting leads to several novel aspects of the
problem, which lead us to propose dedicated algorithms to solve them.

Motivating example. A Pig Latin script consists of a set of binding expressions and
store expressions. Each binding expression follows the syntax var = op, meaning that
the expression op will be evaluated, and the bag of tuples thus generated will be
bound to the variable var. Then, var can be used by follow-up expressions in a script.

Consider the following Pig Latin script a1:
1 A = LOAD ‘page_views ’ AS (user , time , www);
2 B = LOAD ‘users ’ AS (name , zip);
3 R = JOIN A BY user , B BY name;
4 S = FOREACH R GENERATE user , time , zip;
5 STORE S INTO ‘a1out1 ’;
6 T = JOIN A BY user LEFT , B BY name;
7 STORE T INTO ‘a1out2 ’;

Line 1 loads data from a file page_views and creates a bag of tuples that is bound
to variable A. Each of these tuples consists of three attributes (user,time,www).
Line 2 loads data from a second file, and binds the resulting tuple bag to B. Line 3
joins the tuples of A and B based on the equality of the values bound to attributes user
and name. The next line uses the important Pig Latin operator FOREACH, that applies
a function on every tuple of the input bag. In this case, line 4 projects the attributes
user, time and zip of every tuple in C. Then the result is stored in the file a1out1. In
turn, line 6 executes a left outer join over the tuples of A and B based on the equality
of the values bound to the same attributes user and name, and the result is stored in
a1out2.

The following script a2 only executes a left outer join over the same inputs:
1 A = LOAD ‘page_views ’ AS (user , time , www);
2 B = LOAD ‘users ’ AS (name , zip);
3 R = JOIN A BY user LEFT , B BY name;
4 STORE R INTO ‘a2out ’;

The script b that we introduce next produces the same outputs as a1 and a2:
1 A = LOAD ‘page_views ’ AS (user , time , www);
2 B = LOAD ‘users ’ AS (name , zip);
3 R = COGROUP A BY user , B BY name;
4 S = FOREACH R GENERATE flatten(A), flatten(B);
5 T = FOREACH S GENERATE user , time , zip;
6 STORE T INTO ‘a1out1 ’;
7 U = FOREACH R GENERATE flatten(A),
8 flatten (isEmpty(B) ? {(null ,null ,null)} : B);
9 STORE U INTO ‘a1out2 ’;

10 STORE U INTO ‘a2out ’;
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However, b’s execution time is 45% of the combined running time of a1 and a2. The
reason is twofold. First, observe that the joins are rewritten into a COGROUP 1 operation
(line 3) and FOREACH operations (lines 4 and 7-8). The interest of cogroup is that
through some simple restructuring, one can carve out of the cogroup output various
flavors of joins (natural, outer, nested, semijoin etc.) This restructuring operation
differs depending on whether we want to generate the join between A and B needed
for script a1 (line 4), or the left outer join between A and B for scripts a1 and a2
(lines 7-8). The detailed semantics of these restructuring operations will become
clear in Section 5.4. Thus, the first reason for the speedup of b w.r.t. a1 and a2 is
that the COGROUP output is reused to generate the result for both joins. The second
reason is that in b, the left outer join is computed only once, and its result is used to
produced the desired output of scripts a1 (line 9) and a2 (line 10).

Contributions. The technical contributions of this work are the following.

– We formalize the representation of Pig Latin scripts based on an existing well-
established algebraic formalism, specifically Nested Relational Algebra for Bags
(NRAB) [GM93]. This provides a formal foundation for accurately identifying
common expressions in batches of Pig Latin scripts.

– We propose PigReuse, a multi-query optimization algorithm that merges equiv-
alent subexpressions it identifies in Directed Acyclic Graph (DAGs) of NRAB
operators corresponding to a batch of Pig Latin scripts. After identifying such
reutilization opportunities, PigReuse produces an optimal merged plan where
redundant computations have been eliminated. PigReuse relies on an efficient
Binary Integer Linear Programming (BIP, in short) solver to select the best plan
based on the cost function provided.

– We present extensions to our baseline PigReuse optimization algorithm to im-
prove its effectiveness, i.e., increase the number of common subexpressions it
detects.

– We have implemented PigReuse as an extension module within the Apache Pig
system. We present an experimental evaluation of our techniques using two
different cost functions to select the best plan.

Outline. Section 5.2 describes our approach to represent Pig Latin scripts as DAGs of
NRAB operators. Section 5.3 presents PigReuse, our reuse-based query optimization
approach focusing on identifying and merging common subexpressions. Section 5.4
details different strategies that we use to make our reuse-based optimization approach
more effective. Section 5.5 describes our experimental evaluation. Finally, Section 5.6
discusses related work, and then we conclude.

1. COGROUP can be seen as a generalization of the group-by operation on two or more relations:
for every value of the grouping key occurring in any of the inputs, it outputs a tuple that includes an
attribute group bound to the grouping key, and a bag of tuples for each input Ri such that the bag Ri
includes all tuples in Ri that contain the value of the grouping key.



92 CHAPTER 5. REUSE-BASED OPTIMIZATION FOR PIG LATIN

Script 
2

Script 
n...

PigLatin 
parser

Script 
1

Reuse-based 
optimizer

Pig Latin 
logical 

optimizer

MapReduce 
compiler

MapReduce 
optimizer

MapReduce 
execution 

engine

...

Logical plans
Reuse-based optimized 

logical plan

 Optimized 
logical planMapReduce planOptimized 

MapReduce plan

Figure 5.1: Integration of PigReuse optimizer within Pig Latin execution engine.

5.2 Algebraic representation of Pig Latin programs

Figure 5.1 depicts the integration of our reuse-based optimization into the
Pig Latin architecture; modules, denoted by dashed lines, belong to the original
Pig Latin query processor. As shown in the figure, our reuse-based optimizer works on
the algebraic representation of Pig Latin scripts. Thus, our proposal is orthogonal to
the Pig Latin query evaluation and execution process. This allows our approach (i) to
benefit from the Pig Latin optimizer, and (ii) to apply our optimization independently
of the underlying Pig Latin query compilation and execution engines.

The algebraic formalization of Pig Latin is necessary, as it ensures the cor-
rectness of the manipulations involved in the detection of common subexpressions
within batches of Pig Latin scripts, based on known expression equivalence re-
sults [CV93, CM94, LW97]. The Pig Latin data model features complex data
types (e.g., tuple, map etc.) and nested relations with duplicates (bags). Earlier
work [ADD+11] stated that Pig Latin scripts can be translated to Nested Relational
Algebra with bag semantics, but to the best of our knowledge, no formalization of
such translation has been proposed to date. In this section, we present our transla-
tion of PigLatin to an extension of the Nested Relational Algebra for Bags [GM93]
(NRAB, for short) that includes operators needed to support Pig Latin semantics.

In the following, Section 5.2.1 provides background on the NRAB, while Sec-
tion 5.2.2 presents our translation of Pig Latin operators into the algebra operators.
Finally, Section 5.2.3 describes the DAG representation of the translated scripts.

5.2.1 Extended NRAB

We consider a subset of the NRAB algebra and extend it with other operators. Ta-
ble 5.1 lists all basic operators of NRAB (top part) and the additional operators we
introduce (bottom part). All additional operators but scan and store are redundant,
i.e., they can be expressed using the basic operators. We decided to introduce ad-
ditional operators for two main reasons: (i) allowing a one-to-one representation of
Pig Latin scripts into the algebra, and (ii) giving our algorithm additional opportuni-



5.2. ALGEBRAIC REPRESENTATION OF PIG LATIN PROGRAMS 93

Notation Name Input arity Output description

✏ Duplicate
elimination

Unary Distinct tuples from the input relation.

maph'i Restructure Unary All the tuples in the input after applying a function '.
�hpi Selection Unary All the tuples in the input that satisfy the boolean predicate p.
] Additive union n-ary, n� 2 Union of input relations, including duplicates.
� Substraction Binary Difference between relations, including duplicates.
⇥ Cartesian

product
n-ary, n� 2 Cartesian product of input relations, including duplicates.

� Bag-destroy
function

Unary Unnests one level for the tuples in the input relation.

Notation Name Input arity Output description

scanhfileIDi Load - Reads a file and loads it as a relation.
storehdiri Store Unary Writes the contents of the tuples for an input relation to a file.
⇡ha1, . . . , ani Projection Unary Projects attributes a1, . . . , an from the input tuples.
cogroupha1, . . . , ani Cogroup n-ary, n� 1 Groups tuples together from input relations based on the equality of their

values for attributes (a1, . . . , an).
\ha1, . . . , ani Join n-ary, n� 2 Returns the combination of tuples from input relations based on the equal-

ity of their values for attributes (a1, . . . , an).
\ha1, a2i Left outer join Binary Returns the combination of tuples from input relations for which a1=a2,

and the tuples in the left relation without a matching right tuple.
\ ha1, a2i Right outer join Binary Returns the combination of tuples from input relations for which a1=a2,

and the tuples in the right relation without a matching left tuple.
\ ha1, a2i Full outer join Binary Returns the combination of tuples from input relations for which a1=a2,

the tuples in the left relation without a matching right tuple, and the tuples
in the right relation without a matching left tuple.

mapconcath'i Restructure and
concatenate

Unary Applies maph'i and concatenates its result to the original tuple.

empty Empty function Unary The boolean function empty returns true if and only if the input relation is
empty.

sum, max, min,
count

Aggregate
functions

Unary Returns the sum of integer values for an attribute field in an input relation,
maximum integer value, minimum integer value of an attribute field in an
input relation, and total number of tuples in an input relation.

Table 5.1: Basic NRAB operators (top) and proposed extension (bottom) to express
Pig Latin semantics.

ties to detect common subexpressions by exploring different rewritings. For instance,
any type of join can (also) be expressed by a combination of cogroup, restructure,
and bag destroy. Using this alternative representation of a join, it becomes easier to
match it with a subexpression involving a cogroup, than it is to search for common
subexpressions in the plans we would generate using the standard NRAB operators
only.

The formal semantics of NRAB data model and these operators is described the fol-
lowing. First, we recall the NRAB data model in Section 5.2.1.1, while we present the
subset of its operators that we use to represent Pig Latin semantics in Section 5.2.1.2.
Then, Section 5.2.1.3 extends NRAB with the Pig Latin operators, whose semantics
are defined using the subset of NRAB operators that we introduce previously.

5.2.1.1 Data model

Let us assume the existence of a set of domain names bD1, . . . , bDn and an infinitive
set of attributes a1, a2, . . . . Further, the domain names are associated with domains
D1, . . . , Dn. The elements of the domains can be of either atomic type or complex type.
A type is associated with each instance of a domain. Formally, types and values are
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defined as follows:
– If bDi 2 bD is a domain name, then bDi denotes the domain type. For each database

relation R in domain bD, the type of R is bDi.
– If T1, . . . , Tn are types and a1, . . . , an are distinct attribute names for tuples in a

database relation R, then R={{[a1 : T1,..., an : Tn]}} is a bag of tuples in which
[a1 : T1,..., an : Tn] is a tuple type. If v1, ...., vn are values of types T1, ..., Tn,
respectively, then [a1 : v1,..., an : vn] is value of the tuple type. We also include
T[] as a type; the only value of this type is [], the empty tuple.

– A bag is a (homogeneous) collection of tuples that may contain duplicates. If T
is a tuple type, then {{T}} is a bag type, whose domain is a set of bags containing
homogeneous tuples of type T . We say that an element o n-belongs to a bag, if
element o has n occurrences in that bag.

– A bag database is a set of named bags. A bag schema is an expression B : T ,
where B is a bag name and T is a bag type. An instance of B is a bag of type T .

5.2.1.2 Basic operators

NRAB operators. We now describe the NRAB operators [GM93] that we use to ex-
press Pig Latin sementics. The input and output types of all these operators are bag
type.

– Duplicate elimination (✏). This operator extracts the distinct tuples in a relation.
✏(R) is a bag containing exactly one occurrence of each tuple in R i.e., an
element o 1-belongs to ✏(R) iff o p-belongs to R for some p > 0, and 0-belongs to
✏(R) otherwise.

– Restructuring (map). maph'i(R) returns a bag of type {{T}}, constructed by
applying a function ' on each element of R. This operation is introduced for
performing restructuring of complex values, which may include the application
of functions to substructures of the values. map is a higher order operation with
a function parameter ' that describes the restructuring.

– Selection (�). Given a bag R and a boolean valued predicate condition p,
�hpi(R) denotes the select operation that returns a bag containing all the el-
ements of R that satisfy the condition p. Only unary predicates can be used as
parameters for the select; we refer to them as select specifications.

– Additive union (]). This operator deals with the union of bags with possibly
duplicate elements. If R and S are two input relations of bag type {{T}}, then
R] S is a bag of type {{T}}, such that a tuple t of type T n-belongs to R] S, iff t
p-belongs to R and q-belongs to S and n= p+ q.

– Substraction (�). If R and S are two input relations of bag type {{T}}, then
R�S is a bag of type {{T}}, such that a tuple t of type T n-belongs to R�S, iff t
p-belongs to R, q-belongs to S and n=max(0, p�q), where function max returns
the highest among the input values 0 and p� q.

– Cartesian product (⇥). If R and S are bags containing tuples of arity k and
k0 respectively, then R⇥ S is a bag containing tuples of arity k + k0, such that
the new relation X becomes, X = R⇥ S = {[a1, . . . , ak, ak+1, . . . , ak+k0]}, where
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[a1, . . . , ak, ak+1, . . . , ak+k0] is a tuple type. Tuple t =[a1, . . . , ak, ak+1, . . . , ak+k0]
n-belongs to R⇥ S iff t1 = [a1, . . . , ak] p-belongs to R and t2 = [ak+1, . . . , ak+k]
q-belongs to S and n= pq.

– Bag-destroy function (�). � unnests one level of bag nesting. If R is a bag of
type {{S : {{T}}}}, then maph�(S)i(R) results a bag of type {{T}}.

NRAB functions. Function definition in NRAB has two parts: a class of base func-
tions and function constructors that are used for constructing more complex function
expressions.

First, we describe the base functions. In our algebra, constants c, and database
relation names bR are considered as functions. Additionally, each attribute of the input
relation is also considered as a function expression. We use id for denoting the iden-
tity function. For example, maphR] idi(S), denotes that additive union of R’s element
is performed recursively on each of S’s elements, where S is a bag of tuples. Here, id
indicates each element in S. The algebraic operations, except select and restructuring,
are function expressions. Select and restructuring are function constructors, which are
discussed next.

In our algebra, complex functions are constructed by using one of the function con-
struction operators (select and restructuring). If ' is a unary function, then maph'i(R)
is a function. Similarly, if p is a unary boolean-valued function then �hpi(R) is also
a function. We use tuple construction as a function constructor i.e., if f1, . . . , fn are
unary functions, then [ f1, . . . , fn] is a unary function, whose meaning is defined by
[ f1, . . . , fn](x) = [ f1(x), . . . , fn(x)]. Our algebra supports labeled tuple construction
as a function constructor too, i.e., formation of expressions like [A1 = f1, . . . , An = fn]
is allowed; note that the Ais here are not functions but labels. The semantics is given
by [A1 = f1, . . . , An = fn](x) = [A1 : f1(x), . . . , An : fn(x)]. This implies that every
function is unary, where its input is a tuple.

5.2.1.3 Additional operators

In the following, we extend the basic NRAB set of operators to encapsulate the
semantics of more complex operations that are supported by the Pig Latin language.

– Scan (scan). scanhfileIDi is an operator introduced to represent a data source
that reads a file fileID.

– Store (store). storehdiri(R) is an operator introduced to represent a data sink
that writes the bag R to directory dir.

– Projection (⇡). ⇡ha1, . . . , ani(R) projects attributes with names a1, . . . , an from
the tuples in bag R. Formally:

⇡ha1, . . . , ani(R)⌘maph[a1, . . . , an]i(R)
– Cogroup (cogroup). In order to define the semantics of the cogroup operator,

we first define a G operator that works on a single bag. In particular, Ghai(R)
groups the tuples in R by the value bound to a. The result of the expression is
a bag with tuples containing two elements: a group attribute associated to the
grouping value, and a R attribute associated to the bag of tuples whose attribute
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a was bound to that value. Formally:

Ghai(R)⌘maphmaph�hgroup=ai(id)i(R)i (maph[group= a, R= R]i(R))
cogroupha1, . . . , ani(R1, . . . , Rn) groups together tuples from multiple bags R1, . . . , Rn,
based on the values of their attributes a1, . . . , an, respectively. The result of a
cogroup operation is a bag containing a group attribute, bound to values of
attributes a1, . . . , an, followed by one bag of grouped tuples for each relation
in R1, . . . , Rn. Without loss of generality, we define it formally for two input
relations; the extension for more than two inputs is straightforward. Thus:

cogroupha1, a2i(R1, R2)⌘ A9

where:

A1 := Gha1i(R1) A2 := Gha2i(R2)
A3 := \hgroup=groupi(A1,A2) A4 := ⇡hgroupi(A3)
A5 := ⇡hgroupi(A1)A6 := \hgroup=groupi(A5�A4,A1)
A7 := ⇡hgroupi(A2)A8 := \hgroup=groupi(A7�A4,A2)

A9 :=A3 ]A6 ]A8

– Inner join (\). \ha1, a2, . . . , ani(R1, R2, . . . , Rn) creates the cartesian product
between the tuples in bags R1, R2, . . . , Rn, and filters the resulting tuples based
on condition a1=a2= . . .=an. Thus, \ is formalized as:

\ha1, a2, . . . , ani(R1, R2, . . . , Rn)⌘ �ha1=a2= . . .=ani(R1⇥ R2⇥ . . .⇥ Rn)
– Left outer join (\). \ ha1=a2i(R1, R2) returns the cartesian product of tuples

from input relations R1 and R2 for which boolean condition a1=a2 is true, and
the tuples in R1 without a matching right tuple. Formally:

\ ha1, a2i(R1, R2)⌘ A5

where:

A1 := \ha1, a2i(R1, R2) A2 := ⇡ha1i(A1)
A3 := ⇡ha1i(R1) A4 := \ha1, a1i(A3�A2,A1)

A5 :=A1 ]A4

– Right outer join (\ ). \ ha1=a2i(R1, R2) returns the cartesian product of tuples
from input relations R1 and R2 for which boolean condition a1=a2 is true, and
the tuples in R2 without a matching right tuple. Formally:

\ ha1, a2i(R1, R2)⌘ A5

where:

A1 := \ha1, a2i(R1, R2) A2 := ⇡ha2i(A1)
A3 := ⇡ha2i(R2) A4 := \ha2, a2i(A3�A2,A1)

A5 :=A1 ]A4

– Full outer join (\ ). \ ha1=a2i(R1, R2) returns the cartesian product of tuples
from input relations R1 and R2 for which boolean condition a1=a2 is true, the
tuples in R1 without a matching right tuple, and the tuples in R2 without a
matching left tuple. Formally:
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\ ha1, a2i(R1, R2)⌘ A8

where:

A1 := \ha1, a2i(R1, R2)
A2 := ⇡ha1i(A1) A3 := ⇡ha1i(R1)A4 := \ha1, a1i(A3�A2,A1)
A5 := ⇡ha2i(A1) A6 := ⇡ha2i(R2)A7 := \ha2, a2i(A6�A5,A1)

A8 :=A1 ]A4 ]A7

– Restructuring and concatenation (mapconcat). The operation mapconcath'i(R)
applies maph'i(R) and concatenates its result to the original tuple. Thus:

mapconcath'i(R)⌘maph[id,']i(R)
– Empty (empty) and aggregate functions (aggr). The boolean function empty(R)

returns true iff R is empty. In turn, aggregate functions aggr include count,
max, min and sum. count(R) calculates the number elements in a bag of tuples
R. maxhai(R) returns the maximum integer value of an element a in a bag of
tuples R. minhai(R) returns the minimum integer value of an element a in a bag
of tuples R. sumhai(R) returns the sum of integer values for an element a in a
bag of tuples R. Each of these functions can be described in NRAB. For the sake
of presentation, we do not further describe the semantics of these functions in
this thesis.

5.2.2 Pig Latin translation

Along the lines of [RSF06], we define our Pig Latin to NRAB translation by means
of deduction (or translation) rules. In a nutshell, a rule describes how the translation
is performed when some conditions are met over the input. Our rules rely on translation
judgments, noted as J , Ji, and are of the form:

J1 . . . Jn

J

stating that the translation J (conclusion) is recursively made in terms of translations
J1 . . . Jn (premises). The translation judgments Ji are optional.

For ease of presentation, we split the rules in two sets: the first one deals with
the translation of programs as ordered sequences of expressions, while the second set
details the translation of a single Pig Latin operation. Below, we present the rule sets
in turn.

Pig Latin scripts translation. Rules in the first set rely on judgments of the form:

πP∫�† �0

which reads as:

“ A Pig Latin program P is translated to a set of named NRAB expressions �0, in the
context of a given set of named NRAB expressions �.”
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πexpr1∫�0
† �1

. . .
πexprn∫�n�1

† �n

πexpr1; . . . ;exprn;∫�0
† �n

(SCRIPT)

op)A �1 := �0 [ {var=A }
πvar= op∫�0

† �1
(BIND)

A := storehdiri(var) �1 := �0 [ {> =A }
πSTORE var INTO dir∫�0

† �1
(STORE)

Figure 5.2: Translation rules for Pig Latin scripts and basic Pig Latin constructs.

By rules definition, it easily follows that �0 always includes �.
A named NRAB expression is a binding of the form {var=A } where var is a name

given to the algebraic expression A . During the application of the translation rules,
every binding expression {var = op} belonging to the Pig Latin program is translated
into a named algebraic expression {var=A }, whereA is the NRAB expression corre-
sponding to the operation op (and obtained by applying the second set of translation
rules).

Binding expressions in the Pig Latin program are translated one after the other,
according to their order in the program. Each time a named algebraic expression
{var = A } is created, it is added to the context �. The context holds all variables
which may be encountered while translating subsequent Pig Latin binding expressions
of the program; we assume that var is a fresh variable, i.e., it is not already bound in
the context.

Figure 5.2 shows the rules used by the high-level translation process outlined
above. The rules are rather simple; note that the rule corresponding to STORE adds to
the context a dummy binding. This rule records the fact that a bag has been saved on
the disk, thus the symbol > is used instead of a variable symbol, which is not needed
in this case.

Pig Latin operations translation. The second set of rules translates the operator
op from a binding expression var = op into a NRAB expression A . These rules are
defined over judgements of the form:

op)A
which reads as:

“ A Pig Latin operation op is translated to a NRAB expressionA .”

Most Pig Latin operators have a one-to-one correspondence with NRAB operators,
hence the related translation is straightforward. Figure 5.3 shows the translation rules
for these Pig Latin operators. In the following we describe each of these rules.

Rule (LOAD) translates a LOAD expression into a scan that generating a new bag
that satisfies the schema description in the input expression.
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A := scanhfileIDi
LOAD fileID)A (LOAD)

A := ✏(var1)

DISTINCT var1)A
(DISTINCT)

A := �hpi(var1)

FILTER var1 BY p)A (FILTER)

A := �(var)
FLATTEN(var))A (FLATTEN FUNCTION)

A := empty(var)
IsEmpty(var))A (EMPTY FUNCTION)

A := aggr(var)
AGGR(var))A (AGGREGATION FUNCTION)

A := var1 ] . . .] varn

UNION var1, . . . ,varn)A
(UNION)

A := var1⇥ . . .⇥ varn

CROSS var1, . . . ,varn)A
(CROSS)

A := cogroupha1, . . . , ani(var1, . . . ,varn)

COGROUP var1 BY a1, . . . ,varn BY an)A
(GOGROUP)

A1 := \ ha1, . . . , ani(var1, . . . ,varn)

JOIN var1 BY a1, . . . ,varn BY an)A1
(INNER JOIN)

A1 := \ ha1, a2i(var1,var2)

JOIN var1 BY a1 LEFT,var2 BY a2)A1
(LEFT OUTER JOIN)

A1 := \ ha1, a2i(var1,var2)

JOIN var1 BY a1 RIGHT,var2 BY a2)A1
(RIGHT OUTER JOIN)

A1 := \ ha1, a2i(var1,var2)

JOIN var1 BY a1 FULL,var2 BY a2)A1
(FULL OUTER JOIN)

Figure 5.3: Rules for translating Pig Latin operators to corresponding NRAB represen-
tations.

Rule (DISTINCT) translates DISTINCT into a ✏ operator on the input relation var1.
Rule (FILTER) translates a Pig Latin FILTER operator into a selection � with a

condition p on var1.
Rule (FLATTEN FUNCTION) translates FLATTEN into a � function that unnests the

bag var.
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FOREACH var GENERATE var1 . . . ,varn) ⇡hvar1, . . . ,varni(var)
(PROJECTION FE)

f1)A01, . . . , fm)A0m A2 :=maph[A 01, . . . ,A 0m]i(var1)

FOREACH var GENERATE f1, . . . , fm)A2
(SIMPLE FE)

op1)A01 A1 :=mapconcath[nvar1 =A 01]i(var1)
opi )A0i Ai :=mapconcath[nvari =A 0i ]i(Ai�1) 2 i  n

f1)A001 , . . . , fm)A00m An+1 :=maph[A 001 , . . . ,A 00m]i(An)

FOREACH var1 {nvar1 = op1; . . . ;nvarn = opn; GENERATE f1, . . . , fm})An+1
(COMPLEX FE)

Figure 5.4: Translation rules for foreach operator.

Rule (AGGREGATION FUNCTION) translates Pig Latin aggregation functions into the
NRAB aggregate operators counterparts.

The functions introduced in the last two rules are blocks that need to be used in
the algebra in conjunction with an map operator.

Rule (CROSS) translates a CROSS into a cartesian product between var1, . . . , varn.
Rule (GOGROUP) translates a Pig Latin COGROUP operation to its algebraic equiva-

lence cogroup that groups the tuples in var1, . . . , varn based on the values of attributes
bound to a1, . . . , an.

Rule (INNER JOIN) translates an inner join JOIN operator into its algebraic coun-
terpart \. Rule (LEFT OUTER JOIN) translates a Pig Latin left outer join expression into
a \ operator, while rule (RIGHT OUTER JOIN) translates a Pig Latin right outer join
expression into a \ operator. Finally, rule (FULL OUTER JOIN) translates a Pig Latin
full outer join expression into a \ operator. Observe that outer joins can only be
binary in Pig Latin.

A special case is the FOREACH operator, whose translation is not trivial as it is the
main way to write complex programs in Pig Latin, e.g., it allows applying nested
operations. The translation rules for this operator are shown in Figure 5.4. We use
three different rules depending on the form of the FOREACH expression:

– The first rule (PROJECTION FE) deals with the case of an iteration simply pro-
jecting n fields of the input relation. The rule specific to this case enables the
generation of NRAB projections, playing an important role in our optimization
technique. In Figure 5.4, var1,var2,. . .,varn are the fields to be projected from the
input relation denoted by the name var.

– If the previous rule does not apply, and if the FOREACH operator contains a
GENERATE clause with functions applied on the input relation var, the second
rule (SIMPLE FE) is applied. In this rule, every function definition fi inside the
GENERATE clause is translated to an algebraic expression A 0

i and these expres-
sions are applied with a map operator on each tuple in var1 (recall Table 5.1).

– Rule (COMPLEX FE) in Figure 5.4 considers FOREACH expressions containing one
or more binding expressions before the GENERATE clause. Each Pig Latin op-
erator opi is translated first into an algebraic expression A 0

i . These algebraic
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s1

A = LOAD ‘page_views ’ AS (user , time , www);
B = LOAD ‘users ’ AS (name , zip);
R = JOIN A BY user , B BY name;
S = FOREACH R GENERATE user , time , zip;
STORE S INTO ‘s1out ’;

s2

A = LOAD ‘page_views ’ AS (user , time , www);
B = LOAD ‘users ’ AS (name , zip);
C = LOAD ‘power_users ’ AS (id , phone);
R = JOIN A by user , B BY name;
S = FOREACH R GENERATE user , time , zip;
T = JOIN S BY user , C by id;
STORE T INTO ‘s2out ’;

s3

A = LOAD ‘page_views ’ AS (user , time , www);
B = LOAD ‘users ’ AS (name , zip);
R = FOREACH A GENERATE user , time;
S = JOIN R by user LEFT , B by name;
STORE S INTO ‘s3out ’;

s4

A = LOAD ‘page_views ’ AS (user , time , www);
B = LOAD ‘users ’ AS (name , zip);
C = LOAD ‘power_users ’ AS (id , phone);
R = JOIN A BY user , B by name , C by id;
S = FOREACH R GENERATE user , www , zip , id, phone;
STORE S INTO ‘s4out ’;

(a)

A B

q1 q4

π<user,time,zip>

A B C A B A B C

q2 q3s1out s2out s3out s4out

⋈<user,name>

⟕<user,name> π<user,www,zip,
id,phone>

⋈<user,name>

π<user,time,zip>

⋈<user,id>

π<user,time> ⋈<user,name,id>

(b)

Figure 5.5: Sample Pig Latin scripts (a) and their corresponding algebraic DAG rep-
resentation (b).

expressions are then used by a mapconcat operator, which applies A 0
i on each

tuple inA 0
i�1 (or var1 initially) and appends the result to the input tuple; the use

of mapconcat is necessary to use local contextual information that is visible only
in the scope of the translated FOREACH expression. Every function definition fi
inside the GENERATE clause is then translated to an algebraic expression A 00

i ,
which are applied on each of the resulting tuples from the algebraic expression
An.

5.2.3 DAG-structured NRAB queries

Let P be a Pig Latin program, and � be a set of NRAB binding expressions ob-
tained from P via the translation process described above. We define below the DAG
representation of � as follows.

Definition 14. Given a context (set of bindings) �= {var1=A1, . . . , varn=An}, its DAG
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representation is a pair (V, ~E). V is a set of hvari, opAi i tuples such as for each vi 2 V:
– vari is the variable associated to the node (thus, it is the unique identifier of a

node);
– opAi is the top-most algebraic operator in the expression bound to vari;

Further, ~E is a set of edges representing the data flow among the nodes of V . Specifically,
there is an edge ei, j 2 ~E from vi to vj, iff the operation opAj is applied on the bag of tuples
produced by opAi . ⇧

In our DAG representation, a source i.e., a node with no incoming edges, always
contains a scan operator. In turn, a sink i.e., a node with no outgoing edges, always
corresponds to a store operator.

For illustration, Figure 5.5.a introduces four different Pig Latin scripts s1-s4, while
their corresponding algebraic representation is shown in Figure 5.5.b. We will reuse
these sample scripts throughout this chapter. The scripts read data from the three
input relations page_views, users, and power_users; from now on, we depict these
relations as A, B, and C in the algebraic plans, and we refer to them in the same
fashion.

To illustrate, consider the script s1, whose translation yields:

�= { A = scanh‘page_views’i,
B = scanh‘users’i,
R = \ huser, namei(A, B),
S = ⇡huser, time, zipi(R),
storeh‘s1out’i(S) }

After connecting the different algebraic expressions, we obtain the DAG query q1
shown in Figure 5.5.b.

5.3 Reuse-based optimization

We have previously shown how to translate Pig Latin scripts into NRAB DAGs.
Based on this DAG formalism, we now introduce our PigReuse algorithm that opti-
mizes the query plans corresponding to a batch of scripts by reusing results of re-
peated subexpressions.

More specifically, given a collection of NRAB DAG queries Q, PigReuse proceeds in
two steps:
Step (1). Identify and merge all the equivalent subexpressions in Q. To this end, we
use an AND-OR DAG, in which an AND-node (or operator node) corresponds to an
algebraic operation in Q, while an OR-node (or equivalence node) represents a set of
subexpressions that generate the same result bag.
Step (2). Find the optimal plan from the AND-OR DAG. Based on a cost model, we
make a globally optimal choice of the set of operator nodes to be actually evaluated.
Our approach is independent of the particular cost function chosen; we discuss in
Section 5.5.2 the functions that we have implemented for PigReuse.
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The final output of PigReuse is an optimized plan that contains (i) the operator
nodes leading to minimizing the cummulated cost of all the queries in Q, while pro-
ducing, together, the same set of outputs as the original Q, and (ii) equivalence nodes
that represent result sharing of an operator node with other operators in Q. In the
following sections, we describe each step of our reuse-based optimization algorithm
in detail.

5.3.1 Equivalence-based merging

To join all detected equivalent expressions in Q, we build an AND-OR DAG, which
we term equivalence graph (EG, in short); the construction is carried out in the spirit
of previous optimization works [Gra93, RSSB00]. In the EG, an AND-node corre-
sponds to an algebraic operation (e.g., selection, projection etc.). An OR-node o is
introduced whenever a set of expressions e1, e2, . . . , ek have been identified as equiv-
alent; in the EG, o has as children the algebraic nodes at the roots of the expressions
e1, e2, . . . , ek. In the following, we refer to AND-nodes as operator nodes, and OR-nodes
as equivalence nodes.

Formally, we define an EG as follows.

Definition 15. An equivalence graph (EG) is a DAG, defined by the pair (O[A[ To, E),
such that:

– O [ A[ To is the set of nodes:
– O is the set of equivalence nodes.
– A is the set of operator nodes.
– To is the set of sink nodes.

– E ✓ (O⇥ A)[ (A⇥O)[ (A⇥ To) is a set of directed edges such that:
– Each node a 2 A has an in-degree of at least one, and an out-degree equal to

one.
– Each node o 2 O has an in-degree of at least one, and an out-degree of at least

one.
– Each node to 2 To has an in-degree of at least one. ⇧

Observe that in an EG, O nodes can only point to A nodes, while A nodes can only
point to O nodes. In turn, To can only be pointed by A nodes.

An important point to stress here is that equivalence nodes with more than one child
amount to optimization opportunities as they indicate that several operator nodes have
a common (equivalent) child subexpression. In this case, we can choose the “best”
way to compute the result of the subexpression among the choices given by the OR-
node. The choice is based on a cost model, where the best plan corresponds to the
plan with overall minimal cost. Optimal plan selection is discussed in detail in the
next section.

Building the equivalence graph. To build the equivalence graph, we need to identify
equivalent expressions within the input NRAB query set Q. We reuse the classical
notion of query equivalence here, i.e., two expressions are equivalent iff their result is
provably the same regardless of the data on which they are computed.
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We build the EG in the following fashion. First, we create the EG eg with a single
equivalence node os, i.e., the EG source. We take every NRAB query q 2Q and perform
a breadth-first traversal of its nodes. Each source node s 2 q is added to eg, and an
edge (os, s) is created.

Subsequently, for each node n having the source node s as an input, we verify
whether there exists a node neg in eg, such that the expression rooted in n is equivalent
to the one rooted in neg.

– If such an equivalence is detected, we connect n to the equivalence node o that
neg feeds.

– If no such equivalent node is found, n is added to eg, a new equivalence node
o is added to eg, and an edge (n, o) is created. In either case, for each node n0

that is a parent of n in the original query, n0 is added to eg and an edge (o, n0)
is created. Within a set of equivalent nodes, each node is the root of a sub-DAG
that represents a NRAB expression; the expressions corresponding to all these
nodes are equivalent.

To check if two expressions A ,A 0 rooted at nodes n and n0 are equivalent, we
apply the known commutativity, associativity etc. laws that have been extensively
studied for the bag relational algebra [BK90, GL95, PS96, RG03]. If one of the possi-
ble rewritings ofA 0 (guaranteed to be equivalent toA 0 through the abovementioned
prior work) matches the exact syntax ofA , thenA andA 0 are equivalent, and they
become children of the same equivalence node. Our equivalence search algorithm
is sound but not complete; details about the equivalences we are capable of detect-
ing can be found in Appendix B. Recall that the problem of checking equivalence
of two arbitrary Relational Algebra expressions is undecidable [Sol79], and so the
problem is for NRAB. Thus, no terminating equivalence checking algorithm exists for
NRAB. However, as our experimental evaluation shows, the equivalences detected by
PigReuse allow it to bring significant performance savings.

As mentioned above, the equivalent transformation rules we apply are those pre-
viously identified for NRAB, i.e., they only cover operators that have been previously
defined as (extensions of) NRAB operators (i.e., ], �, ⇥, ✏, �, map, �, ⇡, and \,
see Table 5.1). As we will discuss in Section 5.4, we provide a set of new equiva-
lent rewriting rules involving operators we introduced in this work (e.g., cogroup and
outer join variants). These rules allow identifying more equivalences in an efficient
way, and thus improve over the baseline PigReuse algorithm presented in this section.

Figure 5.6 depicts the EG corresponding to the NRAB DAGs q1 to q4 in Figure 5.5.b.
In Figure 5.6, we use boxes to represent equivalence nodes, while sink nodes are rep-
resented by shadowed triangles. All the leaf nodes in the NRAB DAGs that correspond
to the same scan operation (namely, nodes A, B, and C) feed the same equivalence
node. The equi-joins coming from DAGs q1 and q2 on relations A and B over attributes
user and name are also inputs to the same equivalence node.
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A A CA A CB BB B

⋈<user,name> ⋈<user,name>

π<user,time>

π<user,time,zip>

s1out

⋈<user,id>

⟕<user,name>

s2out

s3out

⋈<user,name,id>

π<user,www,zip,
id,phone>

s4out

π<user,time,zip>

 equivalence node

 sink node

operator nodeop<f>

Figure 5.6: EG corresponding to NRAB DAGs q1-q4.

5.3.2 Cost-based plan selection

Once an EG has been generated from a set of NRAB queries, our goal is to find the
best alternative plan (having the smallest possible cost) computing the same outputs
as the original scripts, on any input instance.

We call the output plan a result equivalence graph (or REG, in short).

Definition 16. A result equivalence graph (REG) with respect to an EG defined by (O [
A[ TO, E) is itself a DAG, defined by the pair (O⇤ [ A⇤ [ TO, E⇤) such that:

– O⇤ ✓ O.
– A⇤ ✓ A.
– The set of sink nodes To is identical in EG and REG.
– E⇤ ✓ E.
– Each sink node has an in-degree of exactly one.
– Each operator node in-degree in the REG is equal to its in-degree in the EG.
– Each equivalence node has an in-degree of exactly one, and an out-degree of at

least one. ⇧

In the REG, we choose exactly one among the alternatives provided by each EG
equivalence nodes; the REG produces the same outputs as the original EG, as all sink
nodes are preserved.

Further, each REG can be straightforwardly translated into a NRAB DAG which is
basically an executable Pig Latin expression. The latter expression is the one we turn
to Pig for execution.
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⋈<user,name>

π<user,time>

s1out

⋈<user,id>

⟕<user,name>

s2out

s3out

⋈<user,name,id>

π<user,www,zip,
id,phone>

s4out

π<user,time,zip>

A CB

Figure 5.7: Possible REG for the EG in Figure 5.6.

The choice of which alternative to pick for each equivalence node is guided by a
cost function, the overall goal being to minimize the global cost of the plan. We assign
a cost (weight) to each edge n1 ! n2 in the EG, representing all the processing cost
(or effort) required to fully build the result of n2 out of the result of n1.

Figure 5.7 shows a possible REG produced for the EG depicted in Figure 5.6. This
REG could have been for instance obtained by using a cost function based on counting
the operator nodes in the optimized script. In the REG, each equivalence node has
exactly one input edge, i.e., the scans and other operator nodes are shared across
queries, whenever possible. In Section 5.5, we consider different cost functions and
compare them experimentally.

5.3.3 Cost minimization based on binary integer programming

We model the problem of finding the minimum-cost REG relying on Binary Inte-
ger Programming (BIP), a well-explored branch of mathematical optimizations that
has been used previously to solve many optimization problems in the database litera-
ture [KKM13, YKL97]. Broadly speaking, a typical linear programming problem can
be expressed as:

given a set of linear inequality constraints over a set of variables
find value assignments for the variables
such that the value of an objective function depending on these variables is mini-

mized.

Such problems can be tackled by dedicated binary integer program solvers, some
of which are by now extremely efficient, benefiting from many years of research and
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Minimize: C =
X

e2E

Ce xe

subject to:

xe 2 {0, 1} 8e 2 E (1)

X

e2Ein
to

xe = 1 8to 2 To (2)

X

e2Ein
a

xe = xEout
a
⇥ |Ein

a | 8a 2 A (3)

X

e2Ein
o

xe = max
e2Eout

o

xe 8o 2 O (4)

Figure 5.8: BIP reduction of the optimization problem.

development efforts.

Generating the result equivalence graph. Given an input EG, for each of its nodes
n 2 O[A[ To, we denote by Ein

n and Eout
n the sets of incoming and outgoing edges for

n, respectively.
For each edge e 2 E, we introduce a variable xe, denoting whether or not e is

part of the REG. Since in our specific problem formulation a variable xe can only take
values within {0,1}, our problem is formulated as a BIP problem.

Further, for each edge e 2 E, we denote by Ce the cost C (e) assigned to e by some
cost function C . Importantly, the model we present in the following is independent
of the chosen cost function.

Our optimization problem is stated in BIP terms in Figure 5.8. Equation (1) states
that each xe variable takes values in {0,1}. (2) ensures that every output is generated
exactly once. (3) states that if the (only) outgoing edge of an operator node is se-
lected, all of its inputs are selected as well. This is required in order for the algebraic
operator to be capable of correctly computing its results. Finally, (4) states that if an
equivalence node is generated, it should be used at least once, which is modeled by
means of a max expression.

Since max is not directly supported in the BIP model, the actual BIP constraints
which we use to express (4) are shown in Figure 5.9. These constraints encode the
max constraint as follows. Equation (4.1) introduces a binary variable de2Eout

o
used to

model the max function. Equation (4.2) states that if an outgoing edge of an equiv-
alence node is selected, then one of its incoming edges is selected too. (4.3) states
that if no outgoing edge of an equivalence node is selected, then none of its incoming
edges is selected. Further, (4.3) and (4.4) together ensure that if an outgoing edge
of an equivalence node is selected, only one of its incoming edges will be selected.
Observe that we can model the max function in this fashion since in equation (4),
max is computed over a set of inputs whose values are in [0,1].
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de2Eout
o
2 {0, 1} 8o 2 O (4.1)

X

e2Ein
o

xe � xe2Eout
o

8o 2 O (4.2)

X

e2Ein
o

xe  (xe � de + 1)e2Eout
o
8o 2 O (4.3)

X

e2Eout
o

de = 1 8o 2 O (4.4)

Figure 5.9: BIP representation of the max constraint.

✏ map � ⇡ mapconcat ] ⇥ cogroup \ \ \ \
Ñ É É É É Ñ ÉÜ ÉÜ ÉÜ ÉÜ ÉÜ ÉÜ

É Child ⇡ operator can be swapped with the parent operator, iff none of the fields used
by the parent operator is projected by ⇡.
Ü Child ⇡ operator can be swapped with the parent operator only after rewriting the
original ⇡ operator.
Ñ Child ⇡ operator cannot be swapped with the parent operator.

Figure 5.10: Reordering and rewriting rules for ⇡.

5.4 Effective reuse-based optimization

In this section, we introduce a set of techniques for identifying and exploiting
additional subexpression factorization opportunities that go beyond those that are
possible with the standard NRAB operators. The three extensions we bring to the ba-
sic PigReuse algorithm are: normalization (Section 5.4.1), join decomposition (Sec-
tion 5.4.2), and aggressive merge (Section 5.4.3).

5.4.1 Normalization

Normalization of the input NRAB DAGs is carried out by reordering ⇡ operator
nodes as follows: we push them away from scan operators or closer to store operators.
We do this by visiting all operator nodes in a NRAB DAG, starting from a scan, and by
moving each ⇡ operator up one level at a time. As we will shortly illustrate, pushing
projections up increases the chances to find equivalent subexpressions.

Figure 5.10 spells out the conditions under which a ⇡ can be swapped with its
parent operator. Each column in the topmost row represents a parent operator with
which the child ⇡ may be swapped, and the value of each cell represents different
conditions under which the swap is possible. For example, a child ⇡ can be swapped
with a parent �, iff the selection predicate does not carry over the attributes projected
in ⇡.

A special case is the cogroup operator. Since cogroup nests the input relations,
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s4out

π<user,time,zip,
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π<user,time,zip>

Figure 5.11: EG generated by PigReuse on the normalized NRAB DAGs q1-q4.

reordering ⇡ with this operator requires complex rewriting. In particular, we will
rewrite it into a map that applies the projection ⇡ on the bag of tuples corresponding
to the input relation. map operators containing only combinations of map and ⇡ can
still be pushed up following the conditions in Figure 5.10. This means that, in general,
during normalization, one may need to introduce map operators nested more than
two levels deep. Although the Pig Latin query language does not allow more than
two levels of nested FOREACH expressions, our NRAB representation map allows it;
furthermore, as we have found examining the code for executable plans within the
Pig Latin engine, more than two levels of nesting are supported at the level of the
execution engine 2.

Observe that operators such as ✏ or ] restrict the possibilities of moving ⇡ op-
erators across the DAG. It turns out also that they do not commute with the other
algebraic operators; we term these “unmovable” operators, bordering operators in the
sense that they raise borders to the moving of ⇡ across the DAG.

After our reuse-based algorithm produces the optimized REG, to avoid the perfor-
mance loss incurred by manipulating many attributes at all levels (due to the pulling
up of the projections), we push the ⇡ operators back, as close to the scan as possible.

2. The class pig.newplan.logical.relational.LOForEach, representing the FOREACH op-
erator, has a field called innerPlan which in our tests could contain another LOForEach and so on
on several levels. The purpose of introducing the language-level restriction may have been to prevent
programmers from writing deeply-nested loops whose performance could be poor.
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A1 := cogroupha1, a2, . . . , ani(var1,var2, . . . ,varn)
A2 :=maph�(var1)⇥�(var2)⇥ . . .⇥�(varn)i(A1)

\ ha1, a2, . . . , ani(var1,var2, . . . ,varn) =A2
(IJ)

A1 := cogroupha1, a2i(var1,var2)
A2 :=maph�(var1)⇥�(empty(var2)?{{?}} : var2)i(A1)

\ ha1, a2i(var1,var2) =A2
(LOJ)

A1 := cogroupha1, a2i(var1,var2)
A2 :=maph�(empty(var1)?{{?}} : var1)⇥�(var2)i(A1)

\ ha1, a2i(var1,var2) =A2
(ROJ)

A1 := cogroupha1, a2i(var1,var2)
A2 :=maph�(empty(var1)?{{?}} : var1)⇥

�(empty(var2)?{{?}} : var2)i(A1)

\ ha1, a2i(var1,var2) =A2
(FOJ)

Figure 5.12: Decomposing JOIN operators.

As our normalization algorithm may rewrite ⇡ operators using map, we extended the
Pig Latin optimizer to support the (unnesting) rewriting of such cases, so that the ⇡
can be pushed back down through the plan. Recall that even if they cannot be pushed
back down, the resulting plan (no matter how many levels the ⇡ operators are nested)
will be executable by the Pig engine.

To illustrate the advantages of our normalization phase, Figure 5.11 shows the EG
generated by PigReuse over the normalized NRAB DAGs q1 to q4. Comparing this EG
with the one shown in Figure 5.6, we see that due to the swapping of the ⇡ operator
corresponding to q2, our algorithm can identify an additional common subexpression
between q2 and q4, by determining the equivalence between the joins over A, B, and
C; the corresponding equivalence node is highlighted in Figure 5.11.

5.4.2 Join decomposition

The semantics of Pig Latin ’s join operators e.g., \, \, \ , or \ allow rewriting
(or decomposing) these operators into combinations of cogroup and map operators.
The advantage of decomposing the joins in this way is that the result of the cogroup
operation, which does the heavy-lifting of assembling groups of tuples from which
the map will then build join results, can be shared across different kinds of joins. The
map will be different in each case depending on the join type, but the most expensive
component of computing the join, namely the cogroup, will be factorized. Further,
there is no noticeable performance difference between executing a certain join or its
decomposed rewritten version.

Figure 5.12 shows the decomposition rules that are applied on the input NRAB
DAGs.
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Figure 5.13: EG generated by PigReuse on the normalized and decomposed NRAB
DAGs q1-q4.

Rule (IJ) rewrites an inner equi-join \ into two operators. The first one is a
cogroup on the attributes used by the join predicate. The second one is a map that
does the following for each input tuple: (i) project each bag of tuples corresponding
to the cogroup input relations; (ii) apply a � operation on each of those bags; and
(iii) perform a cartesian product among the tuples resulting from unnesting those
bags. Observe that if a bag is empty, e.g., the input relation did not contain any value
for the given grouping value, the � operator does not produce any tuple, and thus
the tuples from the other bags for the given tuple are discarded. Thus, this rewriting
produces the exact same result as the original \ operator.

The rest of the rules use the aggregation function empty, that checks if an input
bag is empty. For instance, the expression empty(var)?{{?}} : var is a conditional
assignment, that is: if var is empty, a bag with a null tuple (?), i.e., a tuple whose
values are bound to null values, conforming to var schema is assigned, otherwise the
bag var is assigned.

Rule (LOJ) rewrites a left outer join \ into a cogroup on the attributes used by
the join predicate, followed by a map operator that (i) unnests the bag associated
to the left input of the cogroup; (ii) if the bag associated to the right input (var2)
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A1 := cogroupha01, a02, . . . , a0ni(var01,var02, . . . ,var0n)
A2 := ⇡hgroup,var1, . . . ,varki(A1)

A3 := �h¬(empty(var1)^ . . .^ empty(vark))i(A2)

cogroupha1, . . . , aki(var1, . . . ,vark) =A3 |
var1, . . . ,vark⇢var01,var02, . . . ,var0n ^ a1, . . . , ak⇢a01, a02, . . . , a0n

(CG-CG)

A1 := cogroupha01, a02, a03, . . . , a0ni(var01,var02,var03, . . . ,var0n)
A2 :=maph�(var1)⇥�(var2) . . .⇥�(vark)i(A1)

\ha1, a2, . . . , aki(var1,var2, . . . ,vark) =A2 |
var1,var2, . . . ,vark⇢var01,var02,var03, . . . ,var0n ^ a1, a2, . . . , ak⇢a01, a02, a03, . . . , a0n

(IJ-CG)

A1 := cogroupha01, a02, a03, . . . , a0ni(var01,var02,var03, . . . ,var0n)
A2 :=maph�(var1)⇥�(empty(var2)?{{?}} : var2)i(A1)

\ ha1, a2i(var1,var2) =A2 |
var1,var2⇢var01,var02,var03, . . . ,var0n ^ a1, a2⇢a01, a02, a03, . . . , a0n

(LOJ-CG)

A1 := cogroupha01, a02, a03, . . . , a0ni(var01,var02,var03, . . . ,var0n)
A2 :=maph�(empty(var1)?{{?}} : var1)⇥�(var2)i(A1)

\ ha1, a2i(var1,var2) =A2 |
var1,var2⇢var01,var02,var03, . . . ,var0n ^ a1, a2⇢a01, a02, a03, . . . , a0n

(ROJ-CG)

Figure 5.14: Rules for aggressive merge.

is empty, it replaces it with a bag with a null tuple, otherwise it keeps the bag as it
is; (iii) unnests the bag resulting from the previous operation; and (iv) performs a
cartesian product on the tuples resulting from the � operations in order to generate
the \ result. Rule (ROJ) rewrites a right outer join \ in a similar fashion.

Finally, rule (FOJ) rewrites a full outer join \ following the same principle as for
the two previous operators. The difference is that in (FOJ) we check the bags from
both inputs by means of the empty function.

Figure 5.13 shows the EG generated by PigReuse after applying normalization and
decomposition to the NRAB DAGs q1 to q4. One can observe that the decomposition
of the \ operators from q1 and q2, and the \ operator from q3 leads to an additional
sharing opportunity, as the result of the cogroup on attributes user and name can be
shared by the subsequent map operations (highlighted equivalence node).

5.4.3 Aggressive merge

The last extension we propose is based on the observation that it is possible to de-
rive the results of a \ or cogroup operator from the results of a cogroup0 operator, as
long as the former relies on a subset of the input relations and attributes of cogroup0.
This means that these rewritings rely on the notion of cogroup containment. In par-
ticular, this entails checking the containment relationship between respective sets of
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Figure 5.15: EG generated by PigReuse applying aggressive merge on the normalized
and decomposed NRAB DAGs q1-q4.

input relations and attributes. Then, in order to generate the result of the original \
or cogroup operator, we add the appropriate operator on top of cogroup0; this can be
seen as a limited instance of query rewriting using views, where cogroup0 plays the
role of a view. In contrast to the previous extensions that are applied on the input
NRAB DAGs, aggressive merge is applied while creating the EG.

Figure 5.14 shows the rewritings considered by our aggressive merge algorithm.
Rule (CG-CG) states that if a query contains a cogroup0 operator with two or more

input relations, any other cogroup (with at least one input relation, part of the cogroup0

input) can be derived from the previous one in the following fashion. First, a ⇡
operator projects the subset of attributes that are needed for the result of the cogroup
operator. Then, a � operator discards the tuples where all the bags associated to each
input relation are empty.

Rules (IJ-CG), (LOJ-CG), and (ROJ-CG) are similar to those shown in Figure 5.12;
the only difference is that the map operators take only a subset of the bag attributes
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in the original cogroup. Note that we do not have a rule for the \ operator since we
are able to generate its output directly from the result of the cogroup.

Figure 5.15 depicts the EG produced by PigReuse using the aggressive merge ex-
tensions, when normalization and decomposition has been applied to the NRAB plans
q1-q4. The new connections created by aggressive merge are highlighted. The figure
shows how the results for the cogroup, \, and \ operators on A and B relations are
derived from the cogroup operator on A, B, and C .

5.5 Implementation and experimental evaluation

We have implemented PigReuse, our reuse-based optimization approach, in Java
1.6. The source code amounts to about 8000 lines and 50 classes. It works on top of
Apache Pig 0.12.1 [Piga], which relied on the Hadoop platform 1.1.2 [Had]. The cost-
based plan selection algorithm (Section 5.3.2) uses the Gurobi BIP solver 5.6.2 [Gur].

Section 5.5.1 describes our experimental setup. Then, Section 5.5.2 presents the
two alternative cost functions that we have implemented and experimented with;
recall that while the cost function does impact the configuration chosen by the BIP
solver, our approach and algorithms are independent of the cost function chosen.
Finally, Section 5.5.3 presents our experimental results.

5.5.1 Experimental setup

Deployment. All our experiments run in a cluster of 8 nodes connected by a 1GB
Ethernet. Each node has a 2.93GHz Quad Core Xeon processor and 16GB RAM. The
nodes run Linux CentOS 6.4. Each node has two 600GB SATA hard disks where HDFS
is mounted.

Setup. For validation, we used data sets and scripts provided by the PigMix [Pigb]
PigLatin performance benchmark. In particular, we created a page_views input file
of 250 million rows; the benchmark includes other input files, which are based on the
page_views file, and are much smaller than this one. The total size of the data set
amounted to approximately 400 GB before the 3-way replication applied by HDFS.

We run our algorithm with two different workloads. The first one (denoted W1)
comprises 12 scripts taken directly from the PigMix benchmark, namely l2-l7 and l11-
l16); these only use operators supported by our current implementation, e.g., JOIN,
COGROUP, FILTER etc. Each script has on average 7 operators. The second workload
(W2) includes W1, to which we add 8 extra scripts which feature many JOIN flavours,
COGROUP on many relations etc. These scripts are created to give opportunities to
validate our algorithm on a wider variety of operators. Further details about these
workloads can be found in Appendix C.
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5.5.2 Cost functions and experiment metrics

We now present the two cost functions that are implemented currently in Pi-
gReuse, focusing on the number of logical operators, and the number of MapReduce
jobs, respectively. Although more elaborated cost functions can be envisioned, these
two already lead to considerable gains due to reuse, as our experiments shortly show.

Operator-based cost function. A first cost function characterizing the effort required
by the evaluation of a batch of Pig Latin scripts is the number of operators in the
equivalent NRAB expression eventually evaluated, that is:

Ce = 1 8e 2 Eout
a , 8a 2 A

Ce = 0 for all the rest

Above, we assign a cost of 1 to the execution of every algebraic operator a, and
we attach this cost to its outgoing edge. All the other edges, i.e., incoming edges to
an operator node, have a cost of 0.

MapReduce jobs-based cost function. Our second cost function is closely related to
the Pig execution engine on top of MapReduce. The function minimizes the MapRe-
duce jobs needed to compute the results of the input Pig Latin scripts, as some groups
of operators are executed by Pig as part of the same job. For instance, �, ⇡, and map
do not generate a new MapReduce job, which is very convenient for our decomposi-
tion and aggressive merge extension techniques that introduce these operators quite
aggressively when rewriting.

While these cost functions are used by our reuse algorithm, we also use the follow-
ing two standard metrics to quantify the performance of executing a PigLatin script
workload:

Execution time is the wallclock time measured from the moment when the scripts
are submitted to the Pig engine, until the moment their execution is completely
finished;

Total work is the sum of the effort made on all the nodes, i.e., the total CPU time as
returned by logs of the MapReduce execution engine.

5.5.3 Experimental results

We now study the benefits brought by the optimizations proposed in this work.
The reported results are averaged over three runs.

Figure 5.16 shows the effectiveness of our baseline PigReuse algorithm (PR),
PigReuse with normalization (PR+N), PigReuse with normalization and decomposi-
tion (PR+ND), and PigReuse applying all our extensions including aggressive merge
(PR+NDA). The figure shows relative values for the execution time and total work
metrics. The cost function that minimizes the total number of operators in the EG is
denoted by minop, while the cost function that minimizes the total number of MapRe-
duce jobs is denoted by minmr.
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Figure 5.16: PigReuse evaluation using workload W1 (left) and W2 (right).

In Figure 5.16.a, we notice that our PigReuse algorithms reduce the total execution
time by more than 70% on average. Two alternative executions without PigReuse
are shown. In the first one (NoPR/S), we execute sequentially every script in each
workload using a single Pig client. In the second one (NoPR/M), we use multiple
Pig clients that send concurrently the jobs resulting from the scripts to MapReduce.
As it can be seen, the execution time for the second variant is lower as jobs resulting
from multiple scripts are scheduled together, and thus the cluster usage is maximized.
However, observe that the total work (Figure 5.16.b) increases for the multi-client
alternative. In a nutshell, this is because the number of slots needed for map tasks is
very large, so the scheduler cannot create a lot of overlapping among the map phases
of multiple queries. So their execution remains quite sequential.

For the workloads we considered, our extensions reduced the total work over
the baseline PigReuse algorithm (Figure 5.16.b). However, the same did not happen
for the execution time in all cases (Figure 5.16.a). The reason is that some of the
resulting plans entailed more effort but consisted of less execution steps that could be
parallelized easier by the MapReduce engine.

When aggressive merge was applied, the execution time and the total work de-
creased only if the minmr cost function was used. The reason is that if the minop
function is used, PigReuse generates the same REG for PR+ND and PR+NDA, namely,
the REG with the minimum number of operators. However, if the minmr cost function
is used, PigReuse chooses an alternative plan that executes faster even though it has
more operators.

Table 5.2 provides some important metrics concerning the EGs and REGs created
by PigReuse algorithm. As shown in the table, the algorithm reduces the total number
of logical operators by an average of 30%, using any of the two cost functions. In par-
ticular, the REG generated by PigReuse using the minop or minmr cost functions has



5.6. RELATED WORKS 117

PigReuse
PR PR+N PR+ND PR+NDA

W1

EG - Equivalent nodes (#) 58 59 60 62
EG - Operator nodes (#) 83 79 83 87
REG (minop) - Operator nodes (#) 57 58 59 59
REG (minmr) - Operator nodes (#) 57 58 59 60

W2

EG - Equivalent nodes (#) 74 82 83 88
EG - Operator nodes (#) 135 125 131 143
REG (minop) - Operator nodes (#) 73 81 82 82
REG (minmr) - Operator nodes (#) 73 81 82 85

Table 5.2: Reuse-based optimization details for workloads W1 and W2.
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Figure 5.17: PigReuse compile time overhead for workloads W1 (left) and W2 (right).

the same number of operators, except when aggressive merge is used (PR+NDA). The
reason is that all the connections that we establish through the aggressive merge strat-
egy do not result in extra MapReduce jobs. Thus, using that strategy and the minmr
cost function, a plan that contains more nodes but translates into less MapReduce
jobs is selected. As we have seen before, this alternative plan leads to considerable
execution time savings.

Finally, Figure 5.17 shows the total compile time overhead of using PigReuse.
EG creation time includes the time to generate the EG, i.e., identifying equivalent
expressions and merging them, and the time to apply our extensions to the algorithm
(if any). We can observe that the EG creation time increases as the extensions to
the baseline PigReuse are applied. On the other hand, the time to generate the REG
is almost constant among all the strategies. It is important to note that the total
optimization time stays below 125ms in all cases, which is less than 0.007% for all
these workloads whose running time ranges from 28 minutes to 2 hours 35 minutes.
This demonstrates that PigReuse obtains a remarkable execution time improvement
with a negligible overhead, demonstrating its practical interest.

5.6 Related works

Our work relates to several areas of existing research.

Relational multi-query optimization. Early works on multi-query optimization
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(MQO) [Jar85, Sel88] sought to improve the performance of query batches featur-
ing common subexpressions, thus they are the most directly related to our work.
These works proposed exhaustive, expensive optimization algorithms which were not
integrated with existing system optimizers. [RSSB00] was the first to integrate MQO
into a Volcano-style optimizer, while [ZLFL07] presents a completely integrated MQO
solution also comprising the maintenance and exploitation of materialized views. Fi-
nally, the recent [SLZ12] presents a MQO approach taking into account the physical
requirements (e.g., data partitioning) of the consumers of common sub-expressions
in order to propose globally optimal execution plans.

To the best of our knowledge, equivalence or containment-based optimizations on
the NRAB representation of Pig Latin scripts has not been studied before. We argue
that our formalization into NRAB (which we are the first to provide) lays the adequate
foundation for our reuse-based optimization, with correctness guarantees.

Reuse-based optimizations on MapReduce. Multiple works have focused on avoid-
ing redundant processing for a batch of MapReduce jobs by sharing their (interme-
diate) results [AKO08, EA12, LSH+14, NPM+10, WC13]. In contrast to the PigReuse
approach, these works either (i) need some information about the MapReduce job
semantics in order to be efficient [EA12, LSH+14], or (ii) their detected reuse-based
optimization opportunities are limited to inputs and outputs of the mappers and re-
ducers [AKO08, NPM+10, WC13]. Our PigReuse algorithm works on the semantic
representation of Pig Latin scripts. This enables complex reuse-based optimizations,
e.g., those based on rewritings of expressions, and connects the NRAB representation
to the real execution effort through a customizable cost function.

Single query optimization for MapReduce jobs. Recent works have proposed opti-
mizations for MapReduce jobs [HB11, JCR11]. Our approach is orthogonal and com-
plimentary to these optimizations, as we can detect common subexpressions among
batches of Pig Latin queries at the higher level, and then these optimizations may be
applied on the MapReduce jobs generated by the Pig engine.

Optimization using integer programming. Integer programming has been used be-
fore to model different optimization problems in data management systems, e.g., in
materialized view selection and maintenance [YKL97], or optimal utilization of ma-
terialized views in publish/subscribe systems [KKM13]. Although our optimization
goal is different, we got inspiration from these works to model the cost-based plan
selection using integer programming.

5.7 Summary

This chapter has presented a novel approach for identifying and reusing repeated
subexpressions occurring in Pig Latin scripts. In particular, we lay the foundation
of our reuse-based algorithms by formalizing the semantics of the Pig Latin query
language with Extended Nested Relational Algebra for Bags, that is extended accord-
ingly to accommodate the semantics of Pig Latin operators. Our PigReuse algorithm
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identifies sub-expression merging opportunities, and selects the best ones to merge
based on a cost-based search process implemented with the help of a linear program
solver. The output of our algorithm is a merged script reducing a given cost function,
e.g., the number of operators or the number of MapReduce jobs required for execu-
tion. Our experimental results demonstrate the value of our reuse-based algorithms
and optimization strategies.
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Chapter 6

Conclusion and Future Work

As the volume and heterogeneity of Web data continue increasing very rapidly, the
need for efficient systems to manage and extract information from it becomes more
evident.

In this thesis, we have explored the performance and cost of warehousing Web
data into commercial cloud infrastructures, which are so easily accessible nowadays.
Further, we have explored the parallelization and optimization of query languages for
processing Web data over these scalable infrastructures, in order to tackle the data
management challenges that we face today.

6.1 Thesis summary

In this thesis, we have focused on three different problems that we summarize
below.

Warehousing Web data using commercial cloud services. We presented AMADA,
an architecture for warehousing Web data using commercial cloud services.

– We proposed a generic architecture for large-scale warehousing of complex Web
data using commercial cloud services.

– We modeled the monetary costs associated to the exploitation of the warehouse.
– We investigated the usage of content indexing for tree-shaped data, and showed

how indexes served not only as a tool to improve query performance, but also
as a mean to reduce the warehouse associated monetary costs.

– We presented a concrete implementation of our architecture on top of the Ama-
zon Web Services, and presented experimental results evaluating the system
performance as well as its cost.

Parallelizing XQuery execution. We presented PAXQuery, a massively parallel pro-
cessor of XML queries.

– We presented a methodology for massively parallel evaluation of XQuery with-
out any effort from the user.

– We provided translation algorithms from the algebraic representation of a large
fragment of XQuery to a parallel programming model, namely the the PAral-
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lelization ConTracts (or PACT).
– We modeled the translation of complex flavors of join operators that were

needed to execute efficiently XQuery using PACT. The interest of this transla-
tion goes beyond the context of XQuery evaluation, as it can be adopted to
compile programs expressed in other high-level languages into PACT.

– We fully implemented our translation technique into our PAXQuery platform.
We evaluated the scalability and performance of PAXQuery, and demonstrated
that our approach outperforms other competitor systems.

Reuse-based optimization for Pig Latin. We considered the problem of identifying
and reusing common sub-expressions occurring in Pig Latin scripts.

– We formalized the representation of Pig Latin scripts based on an existing well-
established algebraic formalism, specifically Nested Relational Algebra for Bags
(NRAB), providing a formal foundation for identifying correctly common ex-
pressions in batches of Pig Latin scripts.

– We proposed PigReuse, a multi-query optimization algorithm that merges equiv-
alent sub-expressions it identifies in directed acyclic graphs of NRAB operators
corresponding to PigLatin scripts. After identifying such reutilization opportu-
nities, PigReuse produces a merged plan where redundant computations have
been eliminated.

– We presented extensions to our baseline PigReuse optimization algorithm to
increase the number of common subexpressions it detects.

– We presented an experimental evaluation of PigReuse and its extensions, show-
ing the efficiency of our approach, which reduced the execution time of batches
of PigLatin scripts in more than 80% for some cases.

6.2 Perspectives

The efficient large-scale processing of Web data in massively distributed environ-
ments is a very active area of research. We outline below various avenues for future
work.

Warehousing Web data using commercial cloud services. An interesting direction
for this work is to explore query optimization based on multiple objectives [TK14].
These objectives could be conflicting, such as minimizing execution time as well as
monetary costs. A possible outcome of this effort could be an advisor, which based on
specified user requirements, comes up with the best compromise that guarantees that
those requirements are met. Further, AMADA’s implementation could be extended to
support Google and Azure commercial cloud platforms. Then, the previous decision
would not consist only on deciding which indices to create or how to execute a given
query, but on deciding which cloud services provider we should use in order to do it.

Parallelizing XQuery execution. An interesting avenue of work is to introduce new
second order functions in the PACT model, and extend Stratosphere optimizer to
efficiently support them. Some examples may include contracts to perform range
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partitioning or streaming (window) processing. Then, we could enrich the XQuery
fragment supported in this work.

Further, the support for efficient nesting processing in these massively parallel ex-
ecution frameworks remains a challenging problem. It would be interesting to explore
more complex models that would allow automatic and seamlessly parallelization of
this nested computations.

Reuse-based optimization for Pig Latin. Our current focus in this project is on
proposing richer cost functions, so PigReuse can adapt the plan selection to the query
workload more precisely.

Since the emergence of MapReduce, there is an increasing corpora of work that
focuses on optimizing data processing in massively parallel frameworks [LOOW14,
DN14]. An interesting direction is to extend our PigReuse algorithm to be able to
select and maintain intermediary results that could be used in future scripts execu-
tions. Observe that the side-effect of this extension is that we could provide smart
selective fault-tolerance in MapReduce, in contrast to the costly materialization of all
intermediary results that takes place in its current implementation. Further, we could
explore the creation of internal structures to access more efficiently these results at
runtime.

Finally, an additional interesting direction would be to explore extensions for our
PigReuse algorithm to efficiently support multi-user environments.
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Appendix A

PAXQuery Experimental Queries

This section lists the XQuery queries used in the experimental section of Chapter 4.

Query 1. Return the name of the person with ID ‘person0’.
let $pc := collection( ‘ XMarkPeople ’ )
for $p in $pc/site/people/person[@id=" person0 "]
let $n := $p/name/text()
return $n

Query 2. List the names of items registered in Australia along with their descriptions.
let $ic := collection( ‘ XMarkItems ’ )
for $i in $ic/site/regions/australia/item
let $n := $i/name/text(), $d := $i/description
return <item name ="{$n}">{$d}</item >

Query 3. Return the names of all items in Europe whose description contains the word
‘gold’.
let $ic := collection( ‘ XMarkItems ’ )
for $i in $ic/site// europe/item , $d in $i/description/text/text()
let $n := $i/name/text()
where contains($d, "gold")
return $n

Query 4. Print the keywords in emphasis in annotations of closed auctions.
let $cc := collection( ‘ XMarkC lo s edAuc t i on s ’ )
for $a in $cc/site/closed_auctions/closed_auction/annotation/description/

parlist/listitem/parlist/listitem/text/emph/keyword/text()
return <text >{$a}</text >

Query 5. Return the IDs of those auctions that have one or more keywords in emphasis.
let $cc := collection( ‘ XMarkC lo s edAuc t i on s ’ )
for $a in $cc/site/closed_auctions/closed_auction
for $k in $a/annotation/description/parlist/listitem/parlist/listitem/text/

emph/keyword/text()
let $s := $a/seller/@person
where not(empty($k))
return <person id="{$s}"/>

Query 6. Which persons have a homepage?
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let $pc := collection( ‘ XMarkPeople ’ )
for $p in $pc/site/people/person
let $h := $p/homepage , $n := $p/name/text()
where not(empty($h))
return <person name ="{$n}"/>

Query 7. How many sold items cost more than 40?
let $cc := collection( ‘ XMarkC lo s edAuc t i on s ’ )
let $p :=

for $i in $cc/site/closed_auctions/closed_auction
where $i/price/text() >= 40
return $i/price

let $c := count($p)
return $c

Query 8. How many items are listed on all continents?
let $ic := collection( ‘ XMarkItems ’ )
let $i := $ic/site/regions //item
let $c := count($i)
return $c

Query 9. List the number of buyers per city of France.
let $pc := collection( ‘ XMarkPeople ’ ),

$cc := collection( ‘ XMarkC lo s edAuc t i on s ’ )
for $p in $pc/site/people/person[address/country/text()= ‘ F r ance ’ ]
let $a := $p/address/city/text()
for $c in $cc/site/closed_auctions/closed_auction , $i in $p/@id ,

$b in $c/buyer/@person
where $i = $b
group by $a
return <res ><city >{$a}</city ><num >{count($p)}</num ></res >

Query 10. List the names of persons and the names of the items they bought in Europe.
let $pc := collection( ‘ XMarkPeople ’ ),

$cc := collection( ‘ XMarkC lo s edAuc t i on s ’ ),
$ic := collection( ‘ XMarkItems ’ )

let $ca := $cc/site/closed_auctions/closed_auction ,
$ei := $ic/site/regions/europe/item

for $p in $pc/site/people/person
let $pn := $p/name/text()
let $a :=

for $t in $ca , $i in $p/@id , $b in $t/buyer/@person
let $n :=

for $t2 in $ei , $ti2 in $t2/@id , $ti in $t/itemref/@item
where $ti = $ti2
return $t2

let $in :=
for $it in $n/name/text()
return <item >{$it}</item >

where $i = $b
return $in

return <person name ="{$pn}">{$a}</person >

Query 11. List all persons according to their interest; use French markup in the result.
let $pc := collection( ‘ XMarkPeople ’ )
for $i in distinct -values($pc/site/people/person/profile/interest/@category)
let $p :=

for $t in $pc/site/people/person , $c in $t/profile/interest/@category
let $r1 := $t/profile/gender/text(), $r2 := $t/profile/age/text(),
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$r3 := $t/profile/education/text(), $r4 := $t/profile/@income ,
$r5 := $t/name/text(), $r6 := $t/address/street/text(),
$r7 := $t/address/city/text(), $r8 := $t/address/country/text(),
$r9 := $t/emailaddress/text(), $r10 := $t/homepage/text(),
$r11 := $t/creditcard/text()

where $c = $i
return
<personne >

<statistiques >
<sexe >{$r1}</sexe ><age >{$r2}</age >
<education >{$r3}</education ><revenu >{$r4}</revenu >

</statistiques >
<coordonnees >

<nom >{$r5}</nom ><rue >{$r6}</rue >
<ville >{$r7}</ville ><pays >{$r8}</pays >
<reseau >

<courrier >{$r9}</courrier ><pagePerso >{$r10}</pagePerso >
</reseau >

</coordonnees >
<cartePaiement >{$r11}</cartePaiement >

</personne >
return <categorie ><id >{$i}</id >{$p}</categorie >

Query 12. List the names of persons and the number of items they bought.
let $pc := collection( ‘ XMarkPeople ’ ),

$cc := collection( ‘ XMarkC lo s edAuc t i on s ’ )
for $p in $pc/site/people/person
let $n := $p/name/text()
let $a :=

for $t in $cc/site/closed_auctions/closed_auction , $b in $t/buyer/@person ,
$i in $p/@id

where $b = $i
return $t

let $c := count($a)
return <item person ="{$n}">{$c}</item >

Query 13. List the name of users in France and the items that they bought or sold in an
auction.
let $pc := collection( ‘ XMarkPeople ’ ),

$cc := collection( ‘ XMarkC lo s edAuc t i on s ’ )
for $p in $pc/site/people/person , $i in $p/@id ,

$ad in $p/address/country/text()
let $a :=

for $c in $cc// closed_auction , $b in $c/buyer/@person ,
$s in $c/seller/@person

let $ir := $c/itemref
where $i = $b or $i = $s
return $ir

let $n := $p/name
where $ad = ‘ F r ance ’

return <res >{$n,$a}</res >

Query 14. For each rich person, list the number of cars-related items currently on sale
whose price does not exceed 0.02% of the person’s income.
let $pc := collection( ‘ XMarkPeople ’ ),

$oc := collection( ‘ XMarkOpenAuct ions ’ )
for $p in $pc/site/people/person
let $l :=

for $o in $oc/site/open_auctions/open_auction , $i in $o/initial/text(),
$si in $p/profile/@income , $a in $o/annotation //text/text()

let $x := 5000*$i
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where $si > $x and contains($a ,"car")
return $i

for $li in $p/profile/@income
let $n := count($l)
where $li > 200000
return <items person ="{ $li}">{$n}</items >



Appendix B

Algebra Equivalences in PigReuse

This section enumerates the different laws that PigReuse (see Chapter 5) is capable
of applying to detect algebra expressions equivalences, which have been extensively
studied previously [BK90, GL95, PS96, RG03].

Equivalence 1. Cascading of selections:

�hp1i(�hp2i(. . . (�hpni(var)) . . .))⌘ �hp1 ^ p2 ^ . . .^ pni(var)

Equivalence 2. Commutativity of selection:

�hp1i(�hp2i(var))⌘ �hp2i(�hp1i(var))

Equivalence 3. Cascading of projections:

⇡hC1i(⇡hC2i(. . . (⇡hCni(var)) . . .))⌘ ⇡hC1i(var)

where Ci is a set of columns such that Ci ✓ Ci+1, 8i = 1, . . . , n� 1.

Equivalence 4. Cascading of additive union:

var1 ] (var2 ] (. . .] (varn�1 ] varn) . . .))⌘ var1 ] var2 ] . . .] varn

Equivalence 5. Commutativity of additive union:

var1 ] var2 ⌘ var2 ] var1

Equivalence 6. Associativity of additive union:

var1 ] (var2 ] var3)⌘ (var1 ] var2)] var3

Equivalence 7. Cascading of cross:

var1⇥ (var2⇥ (. . .⇥ (varn�1⇥ varn) . . .))⌘ var1⇥ var2⇥ . . .⇥ varn

Equivalence 8. Commutativity of cross:

var1⇥ var2 ⌘ var2⇥ var1
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Equivalence 9. Associativity of cross:

(var1⇥ var2)⇥ var3 ⌘ (var1⇥ var3)⇥ var2

Equivalence 10. Commutativity of cogroup:

cogroupha1, a2i(var1, var2)⌘ cogroupha2, a1i(var2, var1)

Equivalence 11. Cascading of inner join:

\ha1, a2i(var1,\ha2, a3i(var2, . . . , \han�1, ani(varn�1, varn) . . .))⌘
\ha1, a2, . . . , ani(var1, var2, . . . , varn)

Equivalence 12. Commutativity of inner join:

\ha1, a2i(var1, var2)⌘ \ha2, a1i(var2, var1)

Equivalence 13. Associativity of inner join:

\ha1, a2i(var1,\ha2, a3i(var2, var3))⌘ \ha2, a3i(\ha1, a2i(var1, var2), var3)

Equivalence 14. Cascading of full outer join:

\ ha1, a2i(var1, \ ha2, a3i(var2, . . . , \ han�1, ani(varn�1, varn) . . .))⌘
\ ha1, a2, . . . , ani(var1, var2, . . . , varn)

Equivalence 15. Commutativity of full outer join:

\ ha1, a2i(var1, var2)⌘ \ ha2, a1i(var2, var1)

Equivalence 16. Associativity of full outer join:

\ ha1, a2i(var1, \ ha2, a3i(var2, var3))⌘ \ ha2, a3i(\ ha1, a2i(var1, var2), var3)

Equivalence 17. Commutativity of selection and projection:

�hpi(⇡ha1, . . . , ani(var))⌘ ⇡ha1, . . . , ani(�hpi(var))

where every attribute mentioned in p must be included in a1, . . . , an.

Equivalence 18. Commutativity of selection and cross:

�hpi(var1⇥ var2)⌘ �hpi(var1)⇥ var2

where all attributes in p belong to var1. In general, a selection can be replaced by a
cascade of selections, and then some of the resulting selections might commute with
the cross operator.

Equivalence 19. Commutativity of selection and inner join:

�hpi(\ha1, a2i(var1, var2))⌘ \ha1, a2i(�hpi(var1), var2)
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where all attributes in p belong to var1. In general, a selection can be replaced by a
cascade of selections, and then some of the resulting selections might commute with
the join operator.

Equivalence 20. Commutativity of selection and left outer join:

�hpi(\ ha1, a2i(var1, var2))⌘ \ ha1, a2i(�hpi(var1), var2)

where all attributes in p belong to var1. A selection can only be pushed to the left
input of a left outer join operator.

Equivalence 21. Commutativity of selection and right outer join:

�hpi(\ ha1, a2i(var1, var2))⌘ \ ha1, a2i(var1,�hpi(var2))

where all attributes in p belong to var2. A selection can only be pushed to the right
input of a right outer join operator.

Equivalence 22. Commutativity of projection and inner join:

⇡ha1, . . . , ai, ai+1, . . . , ani(\hax , ayi(var1, var2))⌘
\hax , ayi(⇡ha1, . . . , aii(var1),⇡hai+1, . . . , ani(var2))

where attributes a1, . . . , ai belong to var1, while attributes ai+1, . . . , an belong to var2.
Note that the attributes ax , ay must be contained in a1, . . . , ai, ai+1, . . . , an.

Equivalence 23. Commutativity of projection and left outer join:

⇡ha1, . . . , ai, ai+1, . . . , ani(\ hax , ayi(var1, var2))⌘
\ hax , ayi(⇡ha1, . . . , aii(var1),⇡hai+1, . . . , ani(var2))

where attributes a1, . . . , ai belong to var1, while attributes ai+1, . . . , an belong to var2.
Note that the attributes ax , ay must be contained in a1, . . . , ai, ai+1, . . . , an.

Equivalence 24. Commutativity of projection and right outer join:

⇡ha1, . . . , ai, ai+1, . . . , ani(\ hax , ayi(var1, var2))⌘
\ hax , ayi(⇡ha1, . . . , aii(var1),⇡hai+1, . . . , ani(var2))

where attributes a1, . . . , ai belong to var1, while attributes ai+1, . . . , an belong to var2.
Note that the attributes ax , ay must be contained in a1, . . . , ai, ai+1, . . . , an.

Equivalence 25. Commutativity of projection and full outer join:

⇡ha1, . . . , ai, ai+1, . . . , ani(\ hax , ayi(var1, var2))⌘
\ hax , ayi(⇡ha1, . . . , aii(var1),⇡hai+1, . . . , ani(var2))

where attributes a1, . . . , ai belong to var1, while attributes ai+1, . . . , an belong to var2.
Note that the attributes ax , ay must be contained in a1, . . . , ai, ai+1, . . . , an.
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Appendix C

Pig Latin Experimental Script
Workloads

This section lists the Pig Latin scripts used in the experimental section of Chapter 5.
We used two different workloads in our experiments: workload W1 consists of scripts
1-12, while workload W2 consists of the 20 scripts that we introduce below.

Script 1. l2.pig. Extract the estimated revenue for the pages visited by registered users.
A = LOAD ‘page_views ’ AS (user , action , timespent , query_term , ip_addr ,

timestamp , estimated_revenue , page_info , page_links);
B = FOREACH A GENERATE user , estimated_revenue;
alpha = LOAD ‘users ’ AS (name , phone , address , city , state , zip);
beta = FOREACH alpha GENERATE name;
C = JOIN B BY user , beta BY name;
STORE C INTO ‘l2out ’;

Script 2. l3.pig. Extract the total estimated revenue per registered user.
A = LOAD ‘page_views ’ AS (user , action , timespent , query_term , ip_addr ,

timestamp , estimated_revenue , page_info , page_links);
B = FOREACH A GENERATE user , estimated_revenue;
alpha = LOAD ‘users ’ AS (name , phone , address , city , state , zip);
beta = FOREACH alpha GENERATE name;
C = JOIN B BY user , beta BY name;
D = GROUP C BY user;
E = FOREACH D GENERATE group , SUM(C.estimated_revenue);
STORE E INTO ‘l3out ’;

Script 3. l4.pig. How many different actions has each registered user done?
A = LOAD ‘page_views ’ AS (user , action , timespent , query_term , ip_addr ,

timestamp , estimated_revenue , page_info , page_links);
B = FOREACH A GENERATE user , action;
C = GROUP B BY user ;
D = FOREACH C {

aleph = B.action;
beth = DISTINCT aleph;
GENERATE group , COUNT(beth);

}
STORE D INTO ‘l4out ’;

Script 4. l5.pig. List the page visitors that are not registered users.
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A = LOAD ‘page_views ’ AS (user , action , timespent , query_term , ip_addr ,
timestamp , estimated_revenue , page_info , page_links);

B = FOREACH A GENERATE user;
alpha = LOAD ‘users ’ AS (name , phone , address , city , state , zip);
beta = FOREACH alpha GENERATE name;
C = COGROUP B BY user , beta BY name;
D = FILTER C BY COUNT(beta) == 0;
E = FOREACH D GENERATE group;
STORE E INTO ‘l5out ’;

Script 5. l6.pig. How long did visitors that queried for a certain term stayed in the page?
A = LOAD ‘page_views ’ AS (user , action , timespent , query_term , ip_addr ,

timestamp , estimated_revenue , page_info , page_links);
B = FOREACH A GENERATE user , action , timespent , query_term , ip_addr ,

timestamp;
C = GROUP B BY query_term;
D = FOREACH C GENERATE group , SUM(B.timespent);
STORE D INTO ‘l6out ’;

Script 6. l7.pig. How many visits did each user do during the morning/afternoon?
A = LOAD ‘page_views ’ AS (user , action , timespent , query_term , ip_addr ,

timestamp , estimated_revenue , page_info , page_links);
B = FOREACH A GENERATE user , timestamp;
C = GROUP B BY user;
D = FOREACH C {

morning = FILTER B BY timestamp < 43200;
afternoon = FILTER B BY timestamp >= 43200;
GENERATE group , COUNT(morning), COUNT(afternoon);

}
STORE D INTO ‘l7out ’;

Script 7. l11.pig. List all the users in the dataset (without repetitions).
A = LOAD ‘page_views ’ AS (user , action , timespent , query_term , ip_addr ,

timestamp , estimated_revenue , page_info , page_links);
B = FOREACH A GENERATE user;
C = DISTINCT B;
alpha = LOAD ‘users ’ AS (name , phone , address , city , state , zip);
beta = FOREACH alpha GENERATE name;
gamma = DISTINCT beta;
D = UNION C, gamma;
E = DISTINCT D;
STORE E INTO ‘l11out ’;

Script 8. l12.pig. Extract the highest revenue page per user, the total timespent in the
page, and the number of queries per action.
A = LOAD ‘page_views ’ AS (user , action , timespent , query_term , ip_addr ,

timestamp , estimated_revenue , page_info , page_links);
B = FOREACH A GENERATE user , action , timespent , query_term ,

estimated_revenue;
C = FILTER B BY user IS NOT null;
alpha = FILTER B BY user IS null;
D = FILTER C BY query_term IS NOT null;
aleph = FILTER C BY query_term IS null;
E = GROUP D BY user;
F = FOREACH E GENERATE group , MAX(D.estimated_revenue);
STORE F INTO ‘l12out/highest_value_page_per_user ’;
beta = GROUP alpha BY query_term;
gamma = FOREACH beta GENERATE group , SUM(alpha.timespent);
STORE gamma INTO ‘l12out/total_timespent_per_term ’;
beth = GROUP aleph BY action;
gimel = FOREACH beth GENERATE group , COUNT(aleph);
STORE gimel INTO ‘l12out/queries_per_action ’;
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Script 9. l13.pig. List all the page views together with their associated advanced user (if
any).
A = LOAD ‘page_views ’ AS (user , action , timespent , query_term , ip_addr ,

timestamp , estimated_revenue , page_info , page_links);
B = FOREACH A GENERATE user , estimated_revenue;
alpha = LOAD ‘power_users ’ AS (pname , pphone , paddress , pcity , pstate , pzip);
beta = FOREACH alpha GENERATE pname , pphone;
C = JOIN B BY user LEFT , beta BY pname;
STORE C INTO ‘l13out ’;

Script 10. l14.pig. Extract the estimated revenue for the pages visited by registered users.
A = LOAD ‘page_views ’ AS (user , action , timespent , query_term , ip_addr ,

timestamp , estimated_revenue , page_info , page_links);
B = FOREACH A GENERATE user , estimated_revenue;
alpha = LOAD ‘users ’ AS (name , phone , address , city , state , zip);
beta = FOREACH alpha GENERATE name;
C = JOIN B BY user , beta BY name;
STORE C INTO ‘l14out ’;

Script 11. l15.pig. Extract the number of different actions, the average spent time, and
the generated revenue, per registered user.
A = LOAD ‘page_views ’ AS (user , action , timespent , query_term , ip_addr ,

timestamp , estimated_revenue , page_info , page_links);
B = FOREACH A GENERATE user , action , timespent , estimated_revenue;
C = GROUP B BY user;
D = FOREACH C {

beth = DISTINCT B.action;
ts = DISTINCT B.timespent;
rev = DISTINCT B.estimated_revenue;
GENERATE group , COUNT(beth), AVG(ts), SUM(rev);

}
STORE D INTO ‘l15out ’;

Script 12. l16.pig. How much revenue did each registered user generate?
A = LOAD ‘page_views ’ AS (user , action , timespent , query_term , ip_addr ,

timestamp , estimated_revenue , page_info , page_links);
B = FOREACH A GENERATE user , estimated_revenue;
C = GROUP B BY user;
D = FOREACH C {

F = B.estimated_revenue;
GENERATE group , SUM(F);

}
STORE D INTO ‘l16out ’;

Script 13. e1.pig. List all the registered users together with their associated page views
(if any).
A = LOAD ‘page_views ’ AS (user , action , timespent , query_term , ip_addr ,

timestamp , estimated_revenue , page_info , page_links);
B = FOREACH A GENERATE user , estimated_revenue;
alpha = LOAD ‘users ’ AS (name , phone , address , city , state , zip);
beta = FOREACH alpha GENERATE name;
C = JOIN B BY user RIGHT , beta BY name;
STORE C INTO ‘e1out ’;

Script 14. e2.pig. List all the page views and all the registered users, associating them if
possible.
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A = LOAD ‘page_views ’ AS (user , action , timespent , query_term , ip_addr ,
timestamp , estimated_revenue , page_info , page_links);

B = FOREACH A GENERATE user , estimated_revenue;
alpha = LOAD ‘users ’ AS (name , phone , address , city , state , zip);
beta = FOREACH alpha GENERATE name;
C = JOIN B BY user FULL , beta BY name;
STORE C INTO ‘e2out ’;

Script 15. e3.pig. How many different actions has each registered user done?
A = LOAD ‘page_views ’ AS (user , action , timespent , query_term , ip_addr ,

timestamp , estimated_revenue , page_info , page_links);
B = FOREACH A GENERATE user , action;
C = GROUP B BY user ;
D = FOREACH C {

aleph = B.action;
beth = DISTINCT aleph;
GENERATE group , COUNT(beth);

}
STORE D INTO ‘e3out ’;

Script 16. e4.pig. List the page views per registered user, together with their information
as advanced users (if any).
A = LOAD ‘page_views ’ AS (user , action , timespent , query_term , ip_addr ,

timestamp , estimated_revenue , page_info , page_links);
B = FOREACH A GENERATE user;
alpha = LOAD ‘users ’ AS (name , phone , address , city , state , zip);
beta = FOREACH alpha GENERATE name;
X = LOAD ‘power_users ’ AS (pname , pphone , paddress , pcity , pstate , pzip);
Y = FOREACH X GENERATE pname , pphone;
C = COGROUP B BY user , beta BY name , Y BY pname;
D = FILTER C BY COUNT(beta) == 0;
E = FOREACH D GENERATE group;
STORE E INTO ‘e4out ’;

Script 17. e5.pig. How long did visitors with the same IP address stayed in the page?
A = LOAD ‘page_views ’ AS (user , action , timespent , query_term , ip_addr ,

timestamp , estimated_revenue , page_info , page_links);
B = FOREACH A GENERATE user , action , timespent , query_term , ip_addr ,

timestamp;
C = GROUP B BY ip_addr;
D = FOREACH C GENERATE group , SUM(B.timespent);
STORE D INTO ‘e5out ’;

Script 18. e6.pig. Extract the estimated revenue for the pages visited per registered user.
A = LOAD ‘page_views ’ AS (user , action , timespent , query_term , ip_addr ,

timestamp , estimated_revenue , page_info , page_links);
B = FOREACH A GENERATE user , estimated_revenue;
alpha = LOAD ‘users ’ AS (name , phone , address , city , state , zip);
beta = FOREACH alpha GENERATE name;
C = COGROUP B BY user , beta BY name;
STORE C INTO ‘e6out ’;

Script 19. e7.pig. List all the users in the dataset (without repetitions).
A = LOAD ‘page_views ’ AS (user , action , timespent , query_term , ip_addr ,

timestamp , estimated_revenue , page_info , page_links);
B = FOREACH A GENERATE user;
C = DISTINCT B;
alpha = LOAD ‘users ’ AS (name , phone , address , city , state , zip);
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beta = FOREACH alpha GENERATE name;
gamma = DISTINCT beta;
D = UNION C, gamma;
E = DISTINCT D;
STORE E INTO ‘e7out ’;

Script 20. e8.pig. Extract the number of different actions, the average spent time, and
the generated revenue, per registered user.
A = LOAD ‘page_views ’ AS (user , action , timespent , query_term , ip_addr ,

timestamp , estimated_revenue , page_info , page_links);
B = FOREACH A GENERATE user , action , timespent , estimated_revenue;
C = GROUP B BY user;
D = FOREACH C {

beth = DISTINCT B.action;
ts = DISTINCT B.timespent;
rev = DISTINCT B.estimated_revenue;
GENERATE group , COUNT(beth), AVG(ts), SUM(rev);

}
STORE D INTO ‘e8out ’;
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